首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We study motions of galaxies in galaxy clusters formed in the concordance Λ cold dark matter cosmology. We use high-resolution cosmological simulations that follow the dynamics of dark matter and gas and include various physical processes critical for galaxy formation: gas cooling, heating and star formation. Analysing the motions of galaxies and the properties of intracluster gas in a sample of eight simulated clusters at z = 0, we study the velocity dispersion profiles of the dark matter, gas and galaxies. We measure the mean velocity of galaxy motions and gas sound speed as a function of radius and calculate the average Mach number of galaxy motions. The simulations show that galaxies, on average, move supersonically with the average Mach number of ≈1.4, approximately independent of the cluster-centric radius. The supersonic motions of galaxies may potentially provide an important source of heating for the intracluster gas by driving weak shocks and via dynamical friction, although these heating processes appear to be inefficient in our simulations. We also find that galaxies move slightly faster than the dark matter particles. The magnitude of the velocity bias,   b v ≈ 1.1  , is, however, smaller than the bias estimated for subhaloes in dissipationless simulations. Interestingly, we find velocity bias in the tangential component of the velocity dispersion, but not in the radial component. Finally, we find significant random bulk motions of gas. The typical gas velocities are of order ≈20–30 per cent of the gas sound speed. These random motions provide about 10 per cent of the total pressure support in our simulated clusters. The non-thermal pressure support, if neglected, will bias measurements of the total mass in the hydrostatic analyses of the X-ray cluster observations.  相似文献   

2.
We present deep near-infrared images, taken with the Subaru Telescope, of the region around the   z =1.08  radio source 3C 356 which show it to be associated with a poor cluster of galaxies. We discuss evidence that this cluster comprises two subclusters traced by the two galaxies previously proposed as identifications for 3C 356, which both seem to harbour active galactic nuclei, and which have the disturbed morphologies expected if they underwent an interpenetrating collision at the time the radio jets were triggered. We explain the high luminosity and temperature of the diffuse X-ray emission from this system as the result of shock heating of intracluster gas by the merger of two galaxy groups. Taken together with the results on other well-studied powerful radio sources, we suggest that the key ingredient for triggering a powerful radio source, at least at epochs corresponding to   z ∼1  , is a galaxy–galaxy interaction which can be orchestrated by the merger of their parent subclusters. This provides an explanation for the rapid decline in the number density of powerful radio sources since   z ∼1  . We argue that attempts to use distant radio-selected clusters to trace the formation and evolution of the general cluster population must address ways in which X-ray properties can be influenced by the radio source, both directly, by mechanisms such as inverse Compton scattering, and indirectly, by the fact that the radio source may be preferentially triggered at a specific time during the formation of the cluster.  相似文献   

3.
We present detailed observations of MRC 0116+111, revealing a luminous, miniradio halo of ∼240-kpc diameter located at the centre of a cluster of galaxies at redshift   z = 0.131  . Our optical and multiwavelength Giant Metrewave Radio Telescope and Very Large Array radio observations reveal a highly unusual radio source: showing a pair of giant (∼100-kpc diameter) bubble-like diffuse structures, that are about three times larger than the analogous extended radio emission observed in M87 – the dominant central radio galaxy in the Virgo cluster. However, in MRC 0116+111 we do not detect any ongoing active galactic nucleus (AGN) activity, such as a compact core or active radio jets feeding the plasma bubbles. The radio emitting relativistic particles and magnetic fields were probably seeded in the past by a pair of radio jets originating in the AGN of the central cD galaxy. The extremely steep high-frequency radio spectrum of the north-western bubble, located ∼100 kpc from cluster centre, indicates radiation losses, possibly because having detached, it is rising buoyantly and moving away into the putative hot intracluster medium. The other bubble, closer to the cluster centre, shows signs of ongoing particle re-acceleration. We estimate that the radio jets which inflated these two bubbles might have also fed enough energy into the intracluster medium to create an enormous system of cavities and shock fronts, and to drive a massive outflow from the AGN, which could counter-balance and even quench a cooling flow. Therefore, this source presents an excellent opportunity to understand the energetics and the dynamical evolution of radio jet inflated plasma bubbles in the hot cluster atmosphere.  相似文献   

4.
We study the stellar mass assembly of the Spiderweb galaxy  (MRC 1138−262)  , a massive   z = 2.2  radio galaxy in a protocluster and the probable progenitor of a brightest cluster galaxy. Nearby protocluster galaxies are identified and their properties are determined by fitting stellar population models to their rest-frame ultraviolet to optical spectral energy distributions. We find that within 150 kpc of the radio galaxy the stellar mass is centrally concentrated in the radio galaxy, yet most of the dust-uncorrected, instantaneous star formation occurs in the surrounding low-mass satellite galaxies. We predict that most of the galaxies within 150 kpc of the radio galaxy will merge with the central radio galaxy by   z = 0  , increasing its stellar mass by up to a factor of ≃2. However, it will take several hundred Myr for the first mergers to occur, by which time the large star formation rates are likely to have exhausted the gas reservoirs in the satellite galaxies. The tidal radii of the satellite galaxies are small, suggesting that stars and gas are being stripped and deposited at distances of tens of kpc from the central radio galaxy. These stripped stars may become intracluster stars or form an extended stellar halo around the radio galaxy, such as those observed around cD galaxies in cluster cores.  相似文献   

5.
In this paper we present a detailed study of the radio galaxy J1324–3138, located at a projected distance of 2 arcmin from the centre of the Abell cluster of galaxies A3556, belonging to the core of the Shapley Concentration, at an average redshift of z  = 0.05. We have observed J1324–3138 over a wide range of frequencies: at 327 MHz (VLA), 843 MHz (MOST), and at 1376, 2382, 4790 and 8640 MHz (ATCA).   Our analysis suggests that J1324–3138 is a remnant of a tailed radio galaxy, in which the nuclear engine has switched off and the radio source is now at a late stage of its evolution, confined by the intracluster gas. The radio galaxy is not in pressure equilibrium with the external medium, as is often found for extended radio sources in clusters of galaxies. We favour the hypothesis that the lack of observed polarized radio emission in the source is a result of Faraday rotation by a foreground screen, i.e. the source is seen through a dense cluster gas, characterized by a random magnetic field.   An implication of the head–tail nature of the source is that J1324–3138 is moving away from the core of A3556 and that, possibly, a major merging event between the core of A3556 and the subgroup hosting J1324–3138 has already taken place.  相似文献   

6.
As part of an extensive radio–IR–optical–X-ray study of ROSAT clusters of galaxies in the Hydra region we have observed the bimodal Abell cluster A3528, located in the core of the Shapley Supercluster ( z  ≃ 0.053), with the Molonglo Observatory Synthesis Telescope at 843 MHz and the Australia Telescope Compact Array at 1.4 and 2.4 GHz. This is part I in a series of papers which looks at the relationship between the radio and X-ray emission in samples of ROSAT selected clusters.   The radio source characteristics — tailed morphologies and steep spectra — are consistent with the effects of a dense intracluster medium and the pre-merging environment of A3528. In particular, we present evidence that the minor member of the radio-loud dumbbell galaxy located at the centre of the northern component of A3528 is on a plunging orbit. We speculate that this orbit may have been induced by the tidal interactions between the merging components of A3528. In addition, the radio source associated with the dominant member of the dumbbell galaxy exhibits many of the characteristics of compact steep spectrum sources. We argue that the radio emission from this source was triggered ∼ 106 yr ago by tidal interactions between the two members of the dumbbell galaxy, strengthening the argument that compact steep spectrum (CSS) sources are young.   Re-analysis of archive pointed Position Sensitive Proportional Counter (PSPC) data using multiresolution filtering suggests the presence of an AGN and/or a cooling flow in the southern component of A3528.  相似文献   

7.
We present results for a galaxy formation model that includes a simple treatment for the disruption of dwarf galaxies by gravitational forces and galaxy encounters within galaxy clusters. This is implemented a posteriori in a semi-analytic model by considering the stability of cluster dark matter subhaloes at   z = 0  . We assume that a galaxy whose dark matter substructure has been disrupted will itself disperse, while its stars become part of the population of intracluster stars responsible for the observed intracluster light. Despite the simplicity of this assumption, our results show a substantial improvement over previous models and indicate that the inclusion of galaxy disruption is indeed a necessary ingredient of galaxy formation models. We find that galaxy disruption suppresses the number density of dwarf galaxies by about a factor of 2. This makes the slope of the faint end of the galaxy luminosity function shallower, in agreement with observations. In particular, the abundance of faint, red galaxies is strongly suppressed. As a result, the luminosity function of red galaxies and the distinction between the red and the blue galaxy populations in colour–magnitude relationships are correctly predicted. Finally, we estimate a fraction of intracluster light comparable to that found in clusters of galaxies.  相似文献   

8.
Using high-resolution cosmological N -body simulations, we investigate the survival of dark matter satellites falling into larger haloes. Satellites preserve their identity for some time after merging. We compute their loss of mass, energy and angular momentum as they are dissolved by dynamical friction, tidal forces and collisions with other satellites. We also analyse the evolution of their internal structure. Satellites with less than a few per cent of the mass of the main halo may survive for several billion years, whereas larger satellites rapidly sink into the centre of the main halo potential well and lose their identity. Penetrating encounters between satellites are frequent and may lead to significant mass loss and disruption. Only a minor fraction of cluster mass (10–15 per cent on average) is bound to substructure at most redshifts of interest. We discuss the application of these results to the survival and extent of dark matter haloes associated with galaxies in clusters, and to their interactions. We find that a minor fraction of galaxy-size dark matter haloes are disrupted by redshift z  = 0. The fraction of satellites undergoing close encounters is similar to the observed fraction of interacting or merging galaxies in clusters at moderate redshift.  相似文献   

9.
We present the results of high-resolution AP3M+SPH simulations of merging clusters of galaxies. We find that the compression and shocking of the core gas during a merger can lead to large increases in bolometric X-ray luminosities and emission-weighted temperatures of clusters. Cooling flows are completely disrupted during equal-mass mergers, with the mass deposition rate dropping to zero as the cores of the clusters collide. The large increase in the cooling time of the core gas strongly suggests that cooling flows will not recover from such a merger within a Hubble time. Mergers with subclumps having one eighth of the mass of the main cluster are also found to disrupt a cooling flow if the merger is head-on. However, in this case the entropy injected into the core gas is rapidly radiated away and the cooling flow restarts within a few Gyr of the merger. Mergers in which the subcluster has an impact parameter of 500 kpc do not disrupt the cooling flow, although the mass deposition rate is reduced by ∼30 per cent. Finally, we find that equal mass, off-centre mergers can effectively mix gas in the cores of clusters, while head on mergers lead to very little mixing. Gas stripped from the outer layers of subclumps results in parts of the outer layers of the main cluster being well mixed, although they have little effect on the gas in the core of the cluster. None of the mergers examined here resulted in the intracluster medium being well mixed globally.  相似文献   

10.
The processes are investigated by which gas loses its angular momentum during the protogalactic collapse phase, leading to disc galaxies that are too compact with respect to the observations. High-resolution N -body/SPH simulations in a cosmological context are presented including cold gas and dark matter (DM). A halo with quiet merging activity since redshift   z ∼ 3.8  and with a high-spin parameter is analysed that should be an ideal candidate for the formation of an extended galactic disc. We show that the gas and the DM have similar specific angular momenta until a merger event occurs at   z ∼ 2  with a mass ratio of 5:1. All the gas involved in the merger loses a substantial fraction of its specific angular momentum due to tidal torques and dynamical friction processes falls quickly into the centre. In contrast, gas infall through small subclumps or accretion does not lead to catastrophic angular momentum loss. In fact, a new extended disc begins to form from gas that was not involved in the 5:1 merger event and that falls in subsequently. We argue that the angular momentum problem of disc galaxy formation is a merger problem: in cold dark matter cosmology substantial mergers with mass ratios of 1:1 to 6:1 are expected to occur in almost all galaxies. We suggest that energetic feedback processes could in principle solve this problem, however only if the heating occurs at the time or shortly before the last substantial merger event. Good candidates for such a coordinated feedback would be a merger-triggered starburst or central black hole heating. If a large fraction of the low angular momentum gas would be ejected, late-type galaxies could form with a dominant extended disc component, resulting from late infall, a small bulge-to-disc ratio and a low baryon fraction, in agreement with observations.  相似文献   

11.
We study the distribution of projected offsets between the cluster X-ray centroid and the brightest cluster galaxy (BCG) for 65 X-ray-selected clusters from the Local Cluster Substructure Survey, with a median redshift of   z = 0.23  . We find a clear correlation between X-ray/BCG projected offset and the logarithmic slope of the cluster gas density profile at  0.04 r 500(α  ), implying that more dynamically disturbed clusters have weaker cool cores. Furthermore, there is a close correspondence between the activity of the BCG, in terms of detected Hα and radio emission, and the X-ray/BCG offset, with the line-emitting galaxies all residing in clusters with X-ray/BCG offsets of ≤15 kpc. Of the BCGs with  α < −0.85  and an offset <0.02 r 500, 96 per cent (23/24) have optical emission and 88 per cent (21/24) are radio active, while none has optical emission outside these criteria. We also study the cluster gas fraction ( f gas) within r 500 and find a significant correlation with X-ray/BCG projected offset. The mean f gas of the 'small offset' clusters (<0.02 r 500) is  0.106 ± 0.005 (σ= 0.03  ) compared to  0.145 ± 0.009 (σ= 0.04  ) for those with an offset >0.02 r 500, indicating that the total mass may be systematically underestimated in clusters with larger X-ray/BCG offsets. Our results imply a link between cool core strength and cluster dynamical state consistent with the view that cluster mergers can significantly perturb cool cores, and set new constraints on models of the evolution of the intracluster medium.  相似文献   

12.
Recent observations have revealed that damped Lyα clouds (DLAs) host star formation activity. In order to examine if such star formation activity can be triggered by ionization fronts, we perform high-resolution hydrodynamics and radiative transfer simulations of the effect of radiative feedback from propagating ionization fronts on high-density clumps. We examine two sources of ultraviolet (UV) radiation field to which high-redshift ( z ∼ 3) galaxies could be exposed: one corresponding to the UV radiation originating from stars within the DLA, itself, and the other corresponding to the UV background radiation. We find that, for larger clouds, the propagating I-fronts created by local stellar sources can trigger cooling instability and collapse of significant part, up to 85 per cent, of the cloud, creating conditions for star formation in a time-scale of a few Myr. The passage of the I-front also triggers collapse of smaller clumps (with radii below ∼4 pc), but in these cases the resulting cold and dense gas does not reach conditions conducive to star formation. Assuming that 85 per cent of the gas initially in the clump is converted into stars, we obtain a star formation rate of  ∼0.25 M yr−1 kpc−2  . This is somewhat higher than the value derived from recent observations. On the other hand, the background UV radiation which has harder spectrum fails to trigger cooling and collapse. Instead, the hard photons which have long mean free-path heat the dense clumps, which as a result expand and essentially dissolve in the ambient medium. Therefore, the star formation activity in DLAs is strongly regulated by the radiative feedback, both from the external UV background and internal stellar sources and we predict quiescent evolution of DLAs (not starburst-like evolution).  相似文献   

13.
Galaxies can be classified in two broad sequences which are likely to reflect their formation mechanism. The 'main sequence', consisting of spirals, irregulars and all dwarf galaxies, is probably produced by gas settling within dark matter haloes. We show that the sizes and surface densities along this sequence are primarily determined by the distributions of the angular momentum and formation time of dark haloes. They are well reproduced by current cosmogonies provided that galaxies form late, at z  ≲ 2. In this scenario, dwarf ellipticals were small 'discs' at z  ∼ 1 and become 'ellipticals' after they fall into cluster environments. The strong clustering of dwarf ellipticals is then a natural by-product of the merging and transformation process. The number of dwarf galaxies predicted in a cluster such as Virgo is in good agreement with the observed number. On the other hand, the 'giant branch', consisting of giant ellipticals and bulges, is probably produced by the merging of disc galaxies. Based on the observed phase-space densities of galaxies, we show that the main bodies of all giant ellipticals can be produced by dissipationless mergers of high-redshift discs. However, high-redshift discs, although denser than present-day ones, are still not compact enough to produce the high central phase-space density of some low-luminosity ellipticals. Dissipation must have occurred in the central parts of these galaxies during the merger which formed them.  相似文献   

14.
We use a three-dimensional hydrodynamical code to simulate the effect of energy injection on cooling flows in the intracluster medium. Specifically, we compare a simulation of a 1015-M cluster with radiative cooling only with a second simulation in which thermal energy is injected 31 kpc off-centre, over 64 kpc3 at a rate of     for 50 Myr. The heat injection forms a hot, low-density bubble which quickly rises, dragging behind it material from the cluster core. The rising bubble pushes with it a shell of gas which expands and cools. We find the appearance of the bubble in X-ray temperature and luminosity to be in good qualitative agreement with recent Chandra observations of cluster cores. Toward the end of the simulation, at 600 Myr, the displaced gas begins to fall back toward the core, and the subsequent turbulence is very efficient at mixing the low- and high-entropy gas. The result is that the cooling flow is disrupted for up to ∼ 50 Myr after the injection of energy ceases. Thus this mechanism provides a very efficient method for regulating cooling flows, if the injection events occur with a 1:1 duty cycle.  相似文献   

15.
We present 3D hydrodynamical simulations of ram-pressure stripping of a disc galaxy orbiting in a galaxy cluster. In this paper, we focus on the properties of the galaxies' tails of stripped gas. The galactic wakes show a flaring width, where the flaring angle depends on the gas disc's cross-section with respect to the galaxy's direction of motion. The velocity in the wakes shows a significant turbulent component of a few     . The stripped gas is deposited in the cluster rather locally, i.e. within     from where it was stripped. We demonstrate that the most important quantity governing the tail density, length and gas mass distribution along the orbit is the galaxy's mass-loss per orbital length. This in turn depends on the ram pressure as well as the galaxy's orbital velocity.
For a sensitivity limit of     in projected gas density, we find typical tail lengths of     . Such long tails are seen even at large distances (0.5 to     ) from the cluster centre. At this sensitivity limit, the tails show little flaring, but a width similar to the gas disc's size.
Morphologically, we find good agreement with the H  i tails observed in the Virgo cluster by Chung et al. 2007 . However, the observed tails show a much smaller velocity width than predicted from the simulation. The few known X-ray and Hα tails are generally much narrower and much straighter than the tails in our simulations. Thus, additional physics like a viscous intracluster medium (ICM), the influence of cooling and tidal effects may be needed to explain the details of the observations.
We discuss the hydrodynamical drag as a heat source for the ICM but conclude that it is not likely to play an important role, especially not in stopping cooling flows.  相似文献   

16.
We present Chandra data from a 31.7-ks observation of the Centaurus cluster, using the ACIS-S detector. Images of the X-ray emission show a plume-like feature at the centre of the cluster, of extent 60 arcsec (20 kpc in projection). The feature has the same metallicity as gas at a similar radius, but is cooler. Using adaptive binning, we generate temperature, abundance and absorption maps of the cluster core. The radial abundance profile shows that the previously known, steep abundance gradient peaks with a metallicity of  1.3–1.8 Z  at a radius of about 45 arcsec (15 kpc), before falling back to 0.4 Z at the centre of the cluster. A radial temperature profile shows that the temperature decreases inwards. We determine the spatial distributions of each of two temperature components, where applicable. The radiative cooling time of the cooler component within the inner 10 arcsec (3 kpc) is less than  2×107 yr  . X-ray holes in the image coincident with the radio lobes are seen, as well as two outer sharp temperature drops, or cold fronts. The origin of the plume is unclear. The existence of the strong abundance gradient is a strong constraint on extensive convection or gas motion driven by a central radio source.  相似文献   

17.
We present an analysis of 20 galaxy clusters observed with the Chandra X-ray satellite, focusing on the temperature structure of the intracluster medium and the cooling time of the gas. Our sample is drawn from a flux-limited catalogue but excludes the Fornax, Coma and Centaurus clusters, owing to their large angular size compared to the Chandra field of view. We describe a quantitative measure of the impact of central cooling, and find that the sample comprises nine clusters possessing cool cores (CCs) and 11 without. The properties of these two types differ markedly, but there is a high degree of uniformity amongst the CC clusters, which obey a nearly universal radial scaling in temperature of the form   T ∝ r ∼0.4  , within the core. This uniformity persists in the gas cooling time, which varies more strongly with radius in CC clusters  ( t cool∝ r ∼1.3)  , reaching   t cool < 1 Gyr  in all cases, although surprisingly low central cooling times (<5 Gyr) are found in many of the non-CC systems. The scatter between the cooling time profiles of all the clusters is found to be remarkably small, implying a universal form for the cooling time of gas at a given physical radius in virialized systems, in agreement with recent previous work. Our results favour cluster merging as the primary factor in preventing the formation of CCs.  相似文献   

18.
We revisit the issue of the recent dynamical evolution of clusters of galaxies using a sample of Abell, Corwin & Olowin (ACO) clusters with   z < 0.14  , which has been selected such that it does not contain clusters with multiple velocity components nor strongly merging or interacting clusters, as revealed in X-rays. We use as proxies of the cluster dynamical state the projected cluster ellipticity, velocity dispersion and X-ray luminosity. We find indications for a recent dynamical evolution of this cluster population, which however strongly depends on the cluster richness. Poor clusters appear to be undergoing their primary phase of virialization, with their ellipticity increasing with redshift with a rate  dε/d z ≃ 2.5 ± 0.4  , while the richest clusters show an ellipticity evolution in the opposite direction (with  dε/d z ≃−1.2 ± 0.1  ), which could be due to secondary infall. When taking into account sampling effects due to the magnitude-limited nature of the ACO cluster catalogue we find no significant evolution of the cluster X-ray luminosity, while the velocity dispersion increases with decreasing redshift, independent of the cluster richness, at a rate  dσ v /d z ≃−1700 ± 400 km s−1  .  相似文献   

19.
We present a Chandra study of 38 X-ray-luminous clusters of galaxies in the ROSAT Brightest Cluster Sample (BCS) that lie at moderate redshifts  ( z ≈ 0.15–0.4)  . Based primarily on power ratios and temperature maps, we find that the majority of clusters at moderate redshift generally have smooth, relaxed morphologies with some evidence for mild substructure perhaps indicative of recent minor merger activity. Using spatially resolved spectral analyses, we find that cool cores appear still to be common at moderate redshift. At a radius of 50 kpc, we find that at least 55 per cent of the clusters in our sample exhibit signs of mild cooling  ( t cool < 10 Gyr)  , while in the central bin at least 34 per cent demonstrate signs of strong cooling  ( t cool < 2 Gyr)  . These percentages are nearly identical to those found for luminous, low-redshift clusters of galaxies, indicating that there appears to be little evolution in cluster cores since   z ≈ 0.4  and suggesting that heating and cooling mechanisms may already have stabilized by this epoch. Comparing the central cooling times to catalogues of central Hα emission in BCS clusters, we find a strong correspondence between the detection of Hα and central cooling time. We also confirm a strong correlation between the central cooling time and cluster power ratios, indicating that crude morphological measures can be used as a proxy for more rigorous analysis in the face of limited signal-to-noise ratio data. Finally, we find that the central temperatures for our sample typically drop by no more than a factor of ∼3–4 from the peak cluster temperatures, similar to those of many nearby clusters.  相似文献   

20.
We examine the core of the X-ray bright galaxy cluster 2A 0335+096 using deep Chandra X-ray imaging and spatially resolved spectroscopy, and include new radio observations. The set of around eight X-ray bright blobs in the core of the cluster, appearing like eggs in a bird's nest, contains multiphase gas from ∼0.5 to 2 keV. The morphology of the coolest X-ray emitting gas at 0.5 keV temperature is similar to the Hα emitting nebula known in this cluster, which surrounds the central galaxy. XMM–Newton grating spectra confirm the presence of material at these temperatures, showing reasonable agreement with Chandra emission measures. On scales of 80 to 250 kpc, there is a low temperature, high metallicity, swirl of intracluster medium as seen in other clusters. In the core, we find evidence for a further three X-ray cavities, in addition to the two previously discovered. Enhancements in 1.5 GHz radio emission are correlated with the X-ray cavities. The total  4 PV   enthalpy associated with the cavities is around  5 × 1059 erg  . This energy would be enough to heat the cooling region for  ∼5 × 107 yr  . We find a maximum pressure discontinuity of 26 per cent (2σ) across the surface brightness edge to the south-west of the cluster core. This corresponds to an upper limit on the Mach number of the cool core with respect to its surroundings of 0.55.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号