首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Geomagnetism and Aeronomy - The results of a statistical study of the polarization characteristics of irregular geomagnetic Pi3 pulsations observed in polar regions of the magnetosphere and the...  相似文献   

2.
The solar eclipse on August 11, 1999, observed in the region covered by many geomagnetic observatories, has offered a unique opportunity to look for an effect of the eclipse on geomagnetic pulsations. The pulsation activity digital data have been taken from Budkov Observatory in the Czech Republic (in the X component only), from observatories in Germany (Niemegk, Fürstenfeldbruck, Bad Bergzabern), in Hungary (Nagycenk), and for comparison in South Africa (Hermanus, conjugate-point station), and in Finland (Sodankylä, far from the eclipse zone). At all these stations the field in all three component has been recorded. The pulsation amplitudes in the X component exhibit a long-term minimum near the time of the eclipse. Spectral analysis of selected short intervals confirmed this decrease and also revealed a decrease of the average pulsation period during the eclipse. Such a change in the amplitude or in the period was not observed outside of the eclipse interval or in other days. Investigation in some narrower frequency bands showed that the maximal decrease occurred in the 15–20 s band. All these changes can be found in records from all the stations near the eclipse totality belt, also in records at the conjugate-point station, where no eclipse occurred. No signature has been found in records at the station situated far from the eclipse zone.  相似文献   

3.
Geomagnetism and Aeronomy - The concept of “instantaneous” polarization of the horizontal electric component of the Pc1 pulsation field as measured by the coastal and base (offset from...  相似文献   

4.
Ultra low frequency (ULF) waves incident on the Earth are produced by processes in the magnetosphere and solar wind. These processes produce a wide variety of ULF hydromagnetic wave types that are classified on the ground as either Pi or Pc pulsations (irregular or continuous). Waves of different frequencies and polarizations originate in different regions of the magnetosphere. The location of the projections of these regions onto the Earth depends on the solar wind dynamic pressure and magnetic field. The occurrence of various waves also depends on conditions in the solar wind and in the magnetosphere. Changes in orientation of the interplanetary magnetic field or an increase in solar wind velocity can have dramatic effects on the type of waves seen at a particular location on the Earth. Similarly, the occurrence of a magnetospheric substorm or magnetic storm will affect which waves are seen. The magnetosphere is a resonant cavity and waveguide for waves that either originate within or propagate through the system. These cavities respond to broadband sources by resonating at discrete frequencies. These cavity modes couple to field line resonances that drive currents in the ionosphere. These currents reradiate the energy as electromagnetic waves that propagate to the ground. Because these ionospheric currents are localized in latitude there are very rapid variations in wave phase at the Earth’s surface. Thus it is almost never correct to assume that plane ULF waves are incident on the Earth from outer space. The properties of ULF waves seen at the ground contain information about the processes that generate them and the regions through which they have propagated. The properties also depend on the conductivity of the Earth underneath the observer. Information about the state of the solar wind and the magnetosphere distributed by the NOAA Space Disturbance Forecast Center can be used to help predict when certain types and frequencies of waves will be observed. The study of ULF waves is a very active field of space research and much has yet to be learned about the processes that generate these waves.  相似文献   

5.
Summary A local planar approximation of a stratified, inhomogeneous, anisotropic and dissipative ionosphere is presented as an Alfven quarter-wave plate resonator in the Pc1 micropulsation range. The frequency-amplitude structure of the resonance response of an isotropic Alfven wave on the Earth's surface and at a given altitude in the ionosphere is studied in comparison to standing waves in vacuum above an ideal conductor for a particular model of the ionosphere. An asymmetry in the response was found at both boundary of the resonator, at the Earth's surface and at the given altitude z0. The results are related to the vertical changes of frequency dispersion in the dissipative medium of the ionosphere and to the vertical profile of the inhomogeneities of the resonator being considered.  相似文献   

6.
Izvestiya, Physics of the Solid Earth - Abstract—The effect of hot anisotropic plasma on the development of cyclotron instability in the near-Earth space plasma at finite plasma pressure...  相似文献   

7.
Geomagnetic pulsations of the serpentine-emission (SE) type are considered. A method for estimating the frequency and amplitude parameters in the form of a time function for pulsations—SE and the accompanying spectral components—is suggested. An estimation algorithm is developed on the basis of local approximating polyharmonic models and weighted moving average filtration. Examples of the estimation of the frequency and amplitude parameters of SE pulsations are given. It is proposed that the procedure be used to calculate the estimation errors in SE pulsation frequency parameters and to choose the tuning parameters.  相似文献   

8.
观测获取的地磁资料,其中大多数要分析的信号如磁暴、亚暴、地磁脉动均是非平稳信号,它们以合成的形成而被记录下来.这些资料含有大量的非稳态成分.例如,偏移、趋始、突变、事件的起始与终止等.而这些信号成分往往都很重要,它们反映了所要研究的地磁信号的重要特征.它们的频域特性都是随时间而变化的.对这种时变信号进行分析,需要提取某一时段(有时是瞬间)的频域信息,或某一频段的时间信息.这就需要同时具有时间和频率分辨率的基函数来分析地磁信号.  相似文献   

9.
A thorough investigation of short-period oscillations in the Earth’s magnetic field as a fundamental natural process of the magnetospheric plasma began in Russia after V.A. Troitskaya established two oscillatory regimes in the geomagnetic field, namely, the regimes of continuous (Pc) and irregular pulsations (Pi). For studying these pulsations, 19 stations recording the telluric currents were installed during the International Geophysical Year (IGY, 1957–1959) on Troitskaya’s initiative. One of these stations was the Borok station. Subsequently, Borok has become the basic site for investigating geomagnetic pulsations and the main center for studying the short-period pulsations (SPPs) in the Earth’s magnetic field. This is the Borok scientific station where the key fundamental regularities of different types of geomagnetic pulsations were established. Troitskaya led and actively participated these works. Troitskaya organized and conducted the first complex geomagnetic observations in the world at the conjugate points Sogra (Arkhangelsk region, Russia) and Kerguelen (Indian Ocean). These studies were initially tested at the Borok observatory, where it was established that the wave packets of Pc1 geomagnetic pulsations are alternately observed in the northern and southern hemispheres in contrast to the other pulsation types which simultaneously occur in both hemispheres. The studies carried out at Borok promoted the establishment of a new direction in geophysics—diagnostics of the state of the magnetosphere based on the ground observations of geomagnetic pulsations. The analysis of simultaneous observations of the geomagnetic pulsations at polar latitudes of the Arctic and Antarctic was also for the first time conducted at the Borok observatory. This analysis revealed the main characteristics of wave phenomena at the geomagnetic poles and in the vicinity of the projection of the dayside polar cusp. Thus, for the first time in the world, Troitskaya and her Borok colleagues established the key patterns of the oscillatory regimes in the geomagnetic field of the Earth. This laid the basis for the further experimental and theoretical investigations which have shown that SPPs play a leading role in the dynamics of the magnetospheric plasma. In this paper we also list of 60 of Troitskaya’s main publications.  相似文献   

10.
廖晓峰  冯丽丽  祁玉萍  李霞 《地震》2019,39(4):127-135
以西北地区甘青两省地磁资料为研究对象, 应用地磁极化方法对其进行处理和分析, 发现在2017年6月3日阿拉善5.0级地震前, 震中附近地磁台站同步出现了极化超阈值现象, 异常特征如下: ① 阿拉善5.0级地震前出现了3次极化值高值异常, 时间上反映地震的短期特征; ② 3次发生异常的台站数量逐次增加; ③ 3次异常的幅值逐渐增大; ④ 3次异常持续时间依次增大。 ⑤ 3次极化异常空间分布范围随地震的临近而逐渐增大。  相似文献   

11.
基于国家地磁台网中心的地磁秒采样数据,采用地磁垂直强度极化法,计算了2019年1月1日至2020年7月31日全国各地磁台站的极化值,对2019年中国大陆西部(110°E以西)极化异常进行了分析,研究了2020年于田MS6.4等中强地震前地磁极化异常变化特征及其与后续地震的关系。研究发现:(1)地磁极化异常具有空间成组特征,即空间上多个地区可以同时出现地磁极化异常;地磁极化异常一般被认为是震前震源区发生断层蠕动或岩石破裂导致的电磁辐射,这意味着震前可能会有多个地区同时发生断层蠕动或岩石破裂,这一现象似乎表明有一个"力源"在主导多区域同时发生断层蠕动或岩石破裂。(2)地磁极化异常的后续地震具有成组特征,即一个地区出现极化异常后可能发生多次地震。该现象对日常会商分析具有重要参考意义,即此类异常发生预期地震后可能还会有类似地震的发生。(3)以往的一些研究认为地磁极化异常一般在震前2—3个月出现,但本研究发现极化异常出现后10个月在异常区域仍然会发生地震,这表明电磁辐射异常可能不仅仅是短临异常,还可能具有中期指示意义,即断层蠕动或岩石破裂发生时间可能在震前近1年左右便已开始...  相似文献   

12.
The analysis of 85,800 events (1979–1981) of Moscow ambulance calls, related to the myocardial infarction (MI), demonstrates a seasonal variation with the profound summer minima and winter maxima. Similar results were obtained by analyzing the 25-year (1970–1995) statistical monthly data on the death from infarction in Bulgaria. The estimated high correlation coefficient (0.84) between Moscow and Bulgarian data suggests a common reason. There is a great number of clinical and statistical studies confirming that the MI number rises during geomagnetic disturbances, which have a maximum of occurrence near equinox, not in winter. In order to explain this contradiction we suggest that one of the critical additional factors, which affect a human cardiovascular system, could be geomagnetic Pc1 pulsations at frequencies comparable with the human heart beat rate. The MI variations as well as the Pc1 pulsations exhibit a summer minimum. The comparative analysis of the Moscow ambulance MI data and Pc1 pulsations recorded at the geophysical observatory in Borok is presented. It is shown that in about 70% of the days when an anomalously great number of ambulance calls (AMI) has been registered Pc1 pulsations have been recorded. In the winter season the probability of the simultaneous AMI and Pc1 occurrence was 1.5 times larger than their accidental coincidence. Moreover, it was found that the effects of magnetic storms and Pc1 in AMI were much higher in winter than in summer. We suggest that the seasonal variation of the production of the pineal hormone melatonin leads to a winter instability in the human organisms and increases the sensitivity of the patient to the “negative” influence of Pc1 geomagnetic pulsations in winter.  相似文献   

13.
The South Atlantic magnetic Anomaly (SAA) is an important feature of the present geomagnetic field. In this paper we model the space–time evolution of this anomaly over the past 400 years in terms of the resultant between a decrease of a global axial dipole and an increase of a virtual local monopole source. Certain characteristics of this evolution are investigated and some considerations are made in the light of a possible special state of the global geomagnetic field dynamical regime. Among the possible speculations, one is made regarding the topography of the core-mantle boundary (CMB) and its possible aspect beneath the SAA region in terms of simple sinusoidal undulations met by the monopole source during its centennial motion.  相似文献   

14.
利用云南地磁台阵5个测点的秒采样观测数据,提取了发生在云南台阵附近宾川MS5.0级地震前的地磁异常信号。通过对地震前后2个月内各个测点极化值SZ/SH时间序列的分析,发现极化值SZ/SH的幅度在震前半个月有明显的增强,而且异常幅度和震中距成反比。同时,通过4个测点极化值SZ/SH时间序列与Dst指数的对比,确定了这种异常幅度的增强并不是由空间电流体系引起的。  相似文献   

15.
Geomagnetic activity affects aeromagnetic surveys. Geomagnetic variations are quite complex and can be quantified in different ways. A measure of geomagnetic activity that is useful for planning aeromagnetic surveys is the Pc3 pulsation index developed by the Australian Space Weather Agency. Purposeful to developing guidelines for planning aeromagnetic surveys in Canada, we study the variations in Pc3 index amplitude over Canada in 2000. This study shows distinct patterns associated with the sub-auroral zone, the auroral zone, and the polar cap. Average Pc3 index activity is higher during the months of February, July, September, and November in the auroral and sub-auroral zones. The station in the polar cap exhibits maximum activity near midday during the summer months. Detailed analysis of a magnetic storm shows that Pc3 index amplitude during the beginning of the solar storm is least important at the polar cap. The mean Pc3 index also relates to solar wind parameters such as the solar wind velocity and the vertical polarity of the interplanetary magnetic field. Analysis of the morning maximum of the Pc3 index observed in the auroral zone can be used to develop guidelines for planning aeromagnetic surveys in Canada and other areas of the world affected by auroral zones.  相似文献   

16.
An algorithm is developed for automated detection of the short-period Pc1 geomagnetic pulsations (frequency band f = 0.2–3 Hz) from the continuous time series of digital recording during 1998–2014 at the midlatitude Borok station. A digital catalog with the indication of time intervals of the presence and main morphological characteristics of Pc1 pulsations is created. Based on this catalog, the annual, seasonal, and diurnal dynamics of the midlatitude Pc1 pulsation activity is studied for 1998–2014. It is shown that the annual variation of the Pc1 occurrence has a maximum in 2005, i.e., at the end of the solar cycle decay phase, just as in the previous cycles. It is found that the minimum of the cases of Pc1 occurrence is observed in 2009, i.e., not at the maximum, just was the case in the previous cycles, but during the deep minimum of solar activity, which testifies to the untypical conditions in the magnetosphere during the unusually long minimum of the 23rd cycle. The seasonal variation of the Pc1 occurrence has a summer minimum when the series of Pc1 pulsations occur almost thrice as rarely as in winter. Besides, there are relatively small maxima at equinox. The diurnal behavior of Pc1 pulsations has the maxima in the morning and midnight sectors of the magnetosphere. By the superposed epoch analysis technique it is established that the maximal number of the cases of occurrence of Pc1 pulsations at the Borok observatory is observed on the fourth day after the global geomagnetic disturbances. The statistical distributions of pulsations amplitude and duration are obtained.  相似文献   

17.
Geomagnetism and Aeronomy - New mathematical constructions are developed for the regression smoothing of discrete time series defined on an irregular grid. The new method is used to study secular...  相似文献   

18.
While searching for electromagnetic effects of the earthquakes, impulse-type signals in the frequency range of 0–5 Hz preceding the earthquake or following it have been detected. The advance or delay time is from 0 to 5 min. The signals are observed as single or pair impulses. It is supposed that the signals make a significant impact on the state of the magnetosphere and ionosphere. As a result, a sharp change in the regime of Pc1 geomagnetic pulsations is possible. These effects are analyzed on the basis of observations of the geomagnetic pulsations at the Borok Geophysical Observatory.  相似文献   

19.
20.
Using Pc1 data gathered at Ottawa (45.4°N, 75.6°W; L = 3.5) during the International Magnetospheric Study (IMS) period, relationships between ssc, Dst, and the occurrence of Pc1 pulsations are examined. It is found that the sudden compressions of the magnetoshere that took place in the postnoon period (13–22 hLT) frequently produced Pc1 pulsations at Ottawa. This pulsational activity took place about 25 to 125 hours after the occurrence of ssc’s of amplitude 5–25 nT and duration 2–6 min. Pc1’s also occur 20 to 40 hours after maximum Dst deviations in the range 50–110 nT, when the ring current has decayed to a considerable extent (5 nT < Dst < 25 nT). In agreement withHeacock andKivinen (1972), it appears that during the storm recovery phase energetic particles of the ring current with anisotropic pitch angle distribution interact with the surrounding cold plasma of the plasmasphere. When stable trapping limit is reached, proton cyclotron instability is triggered and pulsations in the Pc1 period range are generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号