首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A one-dimensional, hydrodynamical model of the Tamar Estuary shows good agreement with measured tidal elevations and currents. Computed currents are used to drive a one-dimensional moving-element model of the salt balance. The moving-element model overcomes the numerical difficulties associated with strong tidal advection. Axial distributions of salinity at high water, computed using the moving-element model, compare well with measurements. The modelled and observed high water salinity distributions in this macrotidal estuary show little dependence on tidal range. The major variability in salinity is due to runoff. This strong and rapid dependence on runoff is a consequence of short residence (or flushing) times. Typically, residence times are less than one day throughout the year in the upper 10 km of estuary. The residence times maximize in summer, reaching 14 d for the whole estuary. During high runoff winter periods residence times are less than 5 d. Mixing coefficients for the moving-element salinity model are deduced from salinity measurements. Dispersion coefficients at fixed locations along the estuary are deduced from solutions of the salinity model. The spatially-averaged coefficients at mean spring and neap tides are 180 and 240 m2 s?1, respectively, for average runoff. Therefore, spring-neap variations in dispersion are fairly small and show a negative correlation with tidal range. The spatially-averaged dispersion coefficients at mean tides vary from 150 to 300 m2 s?1 for typical summer and winter runoff, respectively. The increase in dispersion with runoff and the decrease with tidal range implies that buoyancy-driven currents generate an important component of the shear dispersion in this estuary.  相似文献   

2.
The Gamtoos is a shallow flood-tidal estuary located on the south coast of South Africa. Even though it has an extensive catchment area, dams limit runoff and mean freshwater inflow is estimated at less than 1 m3 s?1, and the flood tidal deltas constrict and at times even close the mouth. The results presented here derive from an intensive measurement program carried out over a 3-wk period at the end of 1992, immediately after good rains in the Gamtoos catchment region. Freshwater inflow increased to more than 10 m3 s?1, driving the salt wedge downstream and resulting in intense haloclines in the mid-estuary region. The program monitored the return to more average estuarine structures, and even though tidal exchange was restricted, marked differences occurred in stratification at neap and spring tides; tidal exchanges provided the dominant mixing forces. It is found that the shallower upper reaches of the estuary are flushed with relatively small increases in freshwater inflow, though a balance exists with the tidal exchanges through the constricted mouth. The variation in the position of the salt wedge and in the salinity stratification can have substantial implications for biota.  相似文献   

3.
A causeway which had restricted tidal flow in a portion of the Sheepscot River estuary was removed late in 1974. Flowmeter data from moored plankton nets fished over full tidal cycles, and salinity observations made in conjunction with the net sets, were used to evaluate the effects of causeway removal on circulation in the estuary. Tidal flows in the main channel increased by almost 50%. This increase was accompanied by substantial decreases in salinity stratification and in the strength of the gravitational circulation.  相似文献   

4.
为了研究三角洲河口风暴潮溃堤时的盐水运动规律,建立一、二维耦合的盐度数学模型对风暴潮溃堤时的盐水运动进行模拟。模型考虑洪泛区建筑物对盐水运动的影响以及溃口的渐变发展过程。用2008年多个测站的实测数据对河网模型的潮位和盐度计算结果进行了验证。将模型应用于珠江三角洲河网某近海溃口风暴潮溃堤的盐水运动模拟,并绘制了最大盐度等值面图。计算结果表明,该溃口大部分区域的溃堤积水盐度超过了4psu,因此,溃堤洪水的高盐度积水影响不容忽视。通过比较“溃堤”和“不溃堤”两种情况下的河网盐度计算结果,发现上游河道的溃堤分流增大了河道的纳潮量,促使涨潮量增大,增大了下游河网的咸潮上溯风险,减弱了上游来流对咸潮的压制效果。  相似文献   

5.
Bertioga Channel is a partially mixed (type 2) tidal estuary on the coastal plain of São Paulo, Brazil. Hourly current and salinity measurements during neap and spring tides in July 1991 yielded information about the physical structure of the system. Peak along-channel velocities varied from 40 cm s?1 to 60 cm s?1 during flood tides and from 70 cm s?1 to 100 cm s?1 during ebb tides. Net vertical velocity profiles indicate that the net current reverses directions at a depth of 2.5–3.0 m in the halocline. Due to appreciable fortnightly tidal modulation, the estuary alternates from being highly stratified (type 2b) during neap tides, with advection and diffusion contributing equally to the net upstream salt flux, to being moderately stratified (type 2a) during spring tides, when 90% of the net upstream salt transport is the result of effective tidal diffusion. Decomposition of the salt flux indicates that the relative contribution to the upstream salt transport by gravitational circulation shear is greater than the oscillatory tidal flux by a factor of 2.6 during neap tides. The oscillatory tidal flux is generated by the correlation of the tidal components of the u-velocity and salinity and is responsible for approximately the same amount of upstream salt transport, during neap and spring tides. However, during spring tides, this oscillatory term is greater than the other salt flux terms by a factor of 1.4. The total salt transport, through a unit width of the section perpendicular to the flow, was within 2% of the sum of the seven major decomposed, advective and dispersive terms. On the assumption that the Bertioga Channel is laterally homogeneous, the results also indicate that the estuary is not in steady state with respect to salt flux.  相似文献   

6.
The Lower Hillsborough River, Florida is a short (16 km) riverine estuary which has a dam located at its upstream end. Salinity below the dam is influenced by freshwater that flows over or through the structure. Depending on location in the estuary, the response of salinity to changes in upstream freshwater inflows is normally not instantaneous, but lags behind the freshwater release. An analytical approach and a laterally averaged two-dimensional hydrodynamic model were used to examine the response time of salinity in the Lower Hillsborough River to changes in freshwater inflows from the upstream reservoir. A series of case studies were conducted using the model to determine how salinity in the river within one kilometer below the dam would respond to changes in freshwater inflows. The model results suggest that the time lag of salinity in the river depends on whether the upstream freshwater inflows are increasing or decreasing, as well as their magnitude. While the time lag for salinity is about six to eight days for decreasing inflows, it is much shorter for increasing inflows depending on the magnitude of the flow release.  相似文献   

7.
The effects of estuarine circulation and tidal trapping on transport in the Hudson estuary were investigated by a large-scale, high-resolution numerical model simulation of a tracer release. The modeled and measured longitudinal profiles of surface tracer concentrations (plumes) differ from the ideal Gaussian shape in two ways: on a large scale the plume is asymmetric with the downstream end stretching out farther, and small-scale (1–2 km) peaks are present at the upstream and downstream ends of the plume. A number of diagnostic model simulations (e.g., remove freshwater flow) were performed to understand the processes responsible for these features. These simulations show that the large-scale asymmetry is related to salinity. The salt causes an estuarine circulation that decreases vertical mixing (vertical density gradient), increases longitudinal dispersion (increased vertical and lateral gradients in longitudinal velocities), and increases net downstream velocities in the surface layer. Since salinity intrusion is confined to the downstream end of the tracer plume, only that part of the plume is effected by those processes, which leads to the largescale asymmetry. The small-scale peaks are due to tidal trapping. Small embayments along the estuary trap water and tracer as the plume passes by in the main channel. When the plume in the main channel has passed, the tracer is released back to the main channel, causing a secondary peak in the longitudinal profile.  相似文献   

8.
Measurements show that in general salt is vertically well-mixed everywhere in the Great Bay Estuary, New Hampshire except near the river entrances at the head of the estuary. Dyer and Taylor’s (1973) modified version of Ketchum’s segmented tidal prism model has been applied to the Great Bay Estuarine System in order to predict high and low water salinity distribution for a specified river flow. The theory has been modified here to account for the mixing which occurs at the junction of two branches of an estuary. The mixing parameter, which in this model is related to the tidal excursion of water in the estuary, has been determined for different segments in the estuary on the basis of a comparison between predictions and a comprehensive data set obtained for a low river flow period. Using a mixing parameter distribution based on the low river flow calibration procedure the salinity distribution has been predicted for high river flow. The resulting salinity distribution compares favorably with observations for most of the estuary. The corresponding flushing times for water parcels entering at the head of the estuary during periods of low and high river flow is 54.5 and 45.9 tidal cycles respectively.  相似文献   

9.
The flooding-drying process over the intertidal zone of the Satilla River estuary of Georgia was examined using a three-dimensional (3-D) primitive equations numerical model with Mellor and Yamada's (1982) level 2.5 turbulent closure scheme. The model was forced by the semi-diurnal M2, S2, and N2 tides and freshwater discharge at the upstream end of the estuary. The intertidal salt marsh was treated using a 3-D wet-dry point treatment technique that was developed for the σ-coordinate transformation estuary model. Good agreement was found between model-data comparison at anchor monitoring sites and also along the estuary that suggested that the model provided a reasonable simulation of the temporal and spatial distribution of the 3-D tidal current and salinity in the Satilla River estuary. Numerical experiments have shown that the flooding-drying process plays a key role in the simulation of tidal currents in the main river channel and in water transport over the estuarine-salt marsh complex. Ignoring this process could lead to a 50% under-estimation of the amplitude of tidal currents. The model results also revealed a complex spatial structure of the residual flow in the main channel of the river, with characteristics of multiple eddy-like cell circulations. These complicated residual currents are formed due to tidal rectification over variable topography with superimposition of inertial effects, asymmetry of tidal currents, and baroclinic pressure gradients. Water exchanges over the estuary-intertidal salt marsh complex are asymmetric across the estuary, and tend to vary periodically on the northern side while quickly washing out of the marsh zone on the southern side. Strong Stokes’ drifting velocity was predicted in the estuary, so that the Lagrangian trajectories of particles were characterized by strong nonlinear processes that differ significantly from those estimated by the Eulerian residual currents.  相似文献   

10.
A three-dimensional (3-D) suspended sediment model was coupled with a 3-D hydrodynamic numerical model and used to examine the spatial and temporal distribution of suspended sediments in the Satilla River estuary of Georgia. The hydrodynamic model was a modified ECOM-si model with inclusion of the flooding-drying cycle over intertidal salt marshes. The suspended sediment model consisted of a simple passive tracer equation with inclusion of sinking, resuspension, and sedimentation processes. The coupled model was driven by tidal forcing at the open boundary over the inner shelf of the South Atlantic Bight and real-time river discharge at the upstream end of the estuary, with a uniform initial distribution of total suspended sediment (TSS). The initial conditions for salinity were specified using observations taken along the estuary. The coupled model provided a reasonable simulation of both the spatial and temporal distributions of observed TSS concentration. Model-predicted TSS concentrations varied over a tidal cycle; they were highest at maximum flood and ebb tidal phases and lowest at slack tides. Model-guided process studies suggest that the spatial distribution of TSS concentration in the Satilla River estuary is controlled by a complex nonlinear physical process associated with the convergence and divergence of residual flow, a non-uniform along-estuary distribution of bottom stress, and the inertial effects of a curved shoreline.  相似文献   

11.
The South Alligator River, Northern Territory of Australia, has a macrotidal estuary. Tidal influence (spring tidal range 5–6 m at the mouth) extends 105 km up the channel. It is dominated by freshwater in the wet season (December-April) with a salt wedge near the mouth, but is well mixed and becomes saline throughout the dry season. The tidal channel can be divided into four different channel types: an estuarine funnel, a sinuous meandering segment, a cuspate meandering segment (in which the inside of bends are pointed) and an upstream tidal channel. The distribution of morphologically defined land classes and morphological units within each land class on the floodplain flanking the estuary differs from one channel type to another. Several stratigraphic and morphostratigraphic units have been recognized from drill holes on the coastal and deltaic-estuarine plains, and a model of development is proposed on the basis of extensive radiocarbon chronology and palynology. The coastal plain has prograded with most rapid sedimentation between 5000 and 3000 yr BP. A similar pattern of progradation is identified in the estuarine funnel. In the sinuous segment of the estuary the channel has migrated laterally across the floodplain. Previous channel positions are indicated by palaeochannels and the meander tract is occupied by laminated channel sediments. Within the cuspate segment there are numerous sinuous palaeochannels on the plains. In the upstream segment, the channel and palaeochannels have long straight reaches with irregular bends and discontinuous levées, and channel avulsion is indicated. Mangrove mud is a widespread stratigraphic unit throughout the plains. The initial phase of development is a transgressive phase. 8000–6800 yr BP, when mangrove forests extended landwards into a pre-existing valley as sea-level rose. As sea-level stabilized, the transgressive phase was followed by a widespread mangrove phase, termed the ‘big swamp’ 6800–5300 yr BP. The mangrove forests disappeared from most of the plains as vertical accretion continued, and were replaced by grass and sedge-covered floodplains. During the sinuous phase, about 5300–2500 yr BP, the channel migrated laterally and eroded the deltaicestuarine plain and deposited lateral accretion deposits (laminated channel sediments). Part of the channel of the South Alligator River has then progressed from sinuous to cuspate in form, and erosion of river banks has occurred. Transgressive and big swamp phases occurred under rising and stabilizing sea-level, respectively. Later morphodynamic channel adjustments occurred under conditions of stable sea-level. The depositional model has direct application to other estuaries in northern Australia, and may be applied to other areas where sea-level change has been similar.  相似文献   

12.
The distributions of trace metals in the Geum Estuary of western Korea were studied with regard to changes in other estuarine chemical parameters. Dissolved oxygen, pH, and alkalinity increased with increasing salinity. Dissolved aluminum concentrations increased at low salinities and were perhaps influenced by the solubility of particulate aluminosilicate phases. Iron, managanese, cobalt, and zinc are removed from solution in the low salinity end of the estuary. Cobalt and nickel have mid-estuary concentration maxima that may be due to an anthropogenic source. Cadmium, copper, lead, and zinc concentrations also increased in the estuary, possibly as the result of remobilization in the sediments. Cadmium increases are also linked to remineralization from tidal flat sediments in the outer estuary. The source of an increase in dissolved lead at low salinity is unclear, but may be due to release from particles.  相似文献   

13.
A vertical, two-dimensional heavy metal (lead) transport model incorporated into the hydrodynamic, salt, and sediment transport modules was developed to simulate the lead concentration in the tidal Keelung River estuary of northern Taiwan. We validated the developed model with measured data, including longitudinal velocity, salinity, suspended sediment, and heavy metal (lead) concentration, obtained in 1998. An exponential relationship relating the salinity and suspended-sediment concentrations was established to calculate the partition coefficient of lead in the estuary. The simulated results of dissolved, particulate, and total lead concentrations agreed well with the measured data. A model sensitivity analysis indicated that the partition coefficient plays an important role in the distribution of dissolved and particulate lead concentrations along the tidal Keelung River estuary.  相似文献   

14.
Aerial photographs and GIS analysis were used to map the distribution of tidal marsh vegetation along the salinity gradients of the estuaries of the Altamaha and Satilla Rivers in coastal Georgia. Vegetation maps were constructed from 1993 U.S. Geological Survey Digital Orthophoto Quarter Quads, 1∶77,000-scale color infrared photographs taken in 1974 and 1∶24,000-scale black and white photographs taken in 1953, Changes between years were identified using a GIS overlay analysis. Four vegetation classifications were identified and groundtruthed with field surveys: salt marsh (areas containing primarilySpartina alterniflora), brackish marsh (Spartina cynosuroides andS. alterniflora), Juncus (Juncus roemerianus), and fresh marsh (Zizania aquatica, Zizaniopsis miliacae, and others). There was no evidence for an upstream shift in marsh vegetation along the longitudinal axis of either estuary over the time frame of this analysis, which implies there has not been a long-term increase in salinity. Although the inland extent of each marsh zone was further upstream in the Satilla than the Altamaha, they corresponded to similar average high tide salinities in each estuary: areas classified as salt marsh occurred from the mouth up to where average high tide salinity in the water was approximately 15 psu;Juncus ranged from 21 to 1 psu; brackish marsh ranged from 15 to 1 psu; and fresh marsh was upstream of 1 psu. Approximately 63% of the 6,786 ha of tidal marsh vegetation mapped in the Altamaha and 75% of the 10,220 ha mapped in the Satilla remained the same in all 3 yr.Juncus was the dominant classification in the intermediate regions of both estuaries, and shifts between areas classified asJuncus and either brackish or salt marsh constituted the primary vegetation change between 1953 and 1993 (87% of the changes observed in the Altamaha and 95% of those in the Satilla). This analysis suggests that the broad distribution of tidal marsh vegetation along these two estuaries is driven by salinity, but that at the local scale these are dynamic systems with a larger number of factors affecting the frequently changing borders of vegetation patches.  相似文献   

15.
Estuary evolution is investigated using the hydrodynamic and sediment transport model, Delft3D, to study the response of a dammed tidal basin to restored tidal processes. The development of decadal (10-year) morphological simulations of the restored estuary required simplifying several data inputs and implementing a time-scale acceleration technique. An innovative river sediment discharge schematization was developed that connected sediment discharge to morphological change in the estuary. Mud erodibility parameters were determined from laboratory analysis of sediment cores from the modern lakebed and statistical refinement with a Bayes network of the probability of occurrence. The changing estuary morphology appears to have a dominant impact on the physical habitat (substrate, inundation frequency, mean salinity, and salinity range). The numerical model provides a tool to compare the functions of the historical estuary and possible future alternatives for a restored estuary. Sensitivity of the morphological model to sediment types and erodibility parameters was also examined. A conceptual model covering morphology and indicators of physical habitat for three phases of estuary evolution during restoration is presented that could be applied to estuarine systems that are severely out of equilibrium.  相似文献   

16.
The aquatic macrofauna of the Guadalquivir estuary were sampled (1 mm mesh persiana net) at 5 sampling sites located along the entire (except the tidal freshwater region) estuarine gradient of salinity (outer 50 km). A total of 134 fish and macroinvertebrate species was collected but only 62 were considered common or regularly present in the estuary. Univariate measures of the community structure showed statistically significant differences among sampling sites: species richness, abundance, and biomass decreased in the upstream direction, being positively correlated with the salinity. Temporal differences of these three variables were also statistically significant. While a clear seasonal pattern (minimum densities in winter and maximum in spring-summer) was observed for abundance and biomass, no such pattern existed for the number of species. Mysids was the most dominant group throughout the estuary (96% to 99% of abundance; 49% to 85% of biomass), although fish biomass was also important at the outer estuary (36% to 38%). Multivariate analyses indicated highly significant spatial variation in the macrofaunal communities observed along the salinity gradient. These analyses suggest that the underlying structure was a continuum with more or less overlapping distributions of the species dependent on their ability to tolerate different physicochemical conditions. There were also significant temporal (intermonthly + interannual) variation of the estuarine community; the relative multivariate dispersion indicated that monthly variation was more considerable (relative multivariate dispersion >1) at the outer part of the estuary during the wet year (last 20 km) and was higher in the inner stations during the dry year (32 to 50 km from the river mouth). Since a clear negative exponential relationship was observed between the freshwater input (from a dam located 110 km upstream) and water salinity at all sampling stations, it is concluded that the human freshwater management is probably affecting the studied estuarine communities. While the higher seasonal (long-term) stability of the salinity gradient, due to the human control of the freshwater input, may facilitate the recruitment of marine species juveniles during the meteorologically unstable early-spring, the additional (short-term) salinity fluctuations during the warm period may negatively affect species that complete their lifecycle within the estuary.  相似文献   

17.
We describe the tidal circulation and salinity regime of a coastal plain estuary that connects to the ocean through a flood tide delta. The delta acts as a sill, and we examine the mechanisms through which the sill affects exchange of estuarine water with the ocean. Given enough buoyancy, the dynamics of tidal intrusion fronts across the sill and selective withdrawal (aspiration) in the deeper channel landward appear to control the exchange of seawater with estuarine water. Comparison of currents on the sill and stratification in the channel reveals aspiration depths smaller than channel depth during neap tide. During neap tide and strong vertical stratification, seawater plunges beneath the less dense estuarine water somewhere on the sill. Turbulence in the intruding bottom layer on the sill promotes entrainment of fluid from the surface layer, and the seawater along the sill bottom is diluted with estuarine water. During ebb flow, salt is effectively trapped landward of the sill in a stagnant zone between the aspiration depth and the bottom where it can be advected farther upstream by flood currents. During spring tide, the plunge point moves landward and off the sill, stratification is weakened in the deep channel, and aspiration during ebb extends to the bottom. This prevents the formation of stagnant water near the bottom, and the estuary is flooded with high salinity water far inland. The neapspring cycle of tidal intrusion fronts on flood coupled with aspiration during ebb interacts with the sill to play an important role in the transport and retention of salt within the estuary.  相似文献   

18.
长江潮流界位置探讨   总被引:10,自引:2,他引:10  
宋兰兰 《水文》2002,22(5):25-26,34
长江是径流、潮流中等的潮汐河口,纳潮量十分巨大。长江口水流动力因素以径流和潮流为主。对潮流界位置进行了探讨,其位置随上游径流大小而变化,国内流行的一种长江潮流界在江阴的说法是不够确切的。  相似文献   

19.
A 3-D coastal ocean model with a tidal turbine module was used in this paper to study the effects of tidal energy extraction on temperature and salinity stratification and density-driven two-layer estuarine circulation. Numerical experiments with various turbine array configurations were carried out to investigate the changes in tidally averaged temperature, salinity, and velocity profiles in an idealized stratified estuary that connects to coastal water through a narrow tidal channel. The model was driven by tides, river inflow, and sea surface heat flux. To represent the realistic size of commercial tidal farms, model simulations were conducted based on a small percentage (less than 10 %) of the total number of turbines that would generate the maximum extractable energy in the system. Model results show that extraction of tidal in-stream energy will increase the vertical mixing and decrease the stratification in the estuary. Installation of in-stream tidal farm will cause a phase lag in tidal wave, which leads to large differences in tidal currents between baseline and tidal farm conditions. Extraction of tidal energy in an estuarine system has stronger impact on the tidally averaged salinity, temperature, and velocity in the surface layer than the bottom layer even though the turbine hub height is close to the bottom. Finally, model results also indicate that extraction of tidal energy weakens the two-layer estuarine circulation, especially during neap tides when tidal mixing is weakest and energy extraction is smallest.  相似文献   

20.
The distribution of macroinfauna was quantified in subtidal, soft-bottom habitats, extending from the estuarine mouth to the tidal head of the Gamtoos—a small, shallow, temperate estuary situated on the south coast of South Africa. Sampling covered the full salinity gradient from fresh to marine waters, and all sediment types from marine sands to fluvial silts. A total of 35 taxa was recorded, of which 22 occurred throughout the year. Species richness and diversity declined from the seawater-dominated mouth region toward the fresh water section at the tidal head of the estuary. Sediment type generally bore no clear relation to biotic diversity. A marked drop in salinity between winter and summer sample series (Δ 0.2‰ to 24‰) coincided with a reduction of mean macrofaunal density by 70%, a more seaward relocation, and a compression of axial ranges of most taxa. Numerical classification and ordination of faunistically similar regions and of co-occurring species delineated four habitat zones along the longitudinal axis of the estuary which harbour four distinct macrofaunal assemblages: 1) A tidal inlet area with salinities close to seawater; clean, coarse, marine sands, rich in CaCO3 harbour a stenohaline fauna normally found on adjacent, marine sandy beaches. 2) In the lower reaches, where fine, fluvial silts of high organic content prevail, euryhaline polychaetes dominate the macrozoobenthic community; bottom salinities in this zone seldom dropped below 25‰ 3) The middle reaches, characterized by oligohaline- to polyhaline waters, stretch over sandy sediments of intermediate carbonate, silt, and organic fractions; the fauna comprises typical estuarine forms, which occurred throughout most of the estuary except at its seaward and landward limits. 4) The upper reaches encompass the limnetic waters near the tidal head of the estuary with sediments in this zone being composed mostly of coarse, clean sands, low in CaCO3; the macrobenthos in this region is dominated by taxa of freshwater origin, which generally do not penetrate seaward beyond the oligohaline waters, and by exceptionally euryhaline estuarine species. Salinity appears as the main factor in controlling faunal assemblages at both extremes of the estuarine gradient (i.e., tidal inlet and head), whereas sediment type delineates between communities in the mesohaline to polyhaline reaches. Axial (i.e., from tidal inlet to tidal head of the estuary) zonation patterns of macroinfauna broadly matched those of mesozooplankton and fishes, supporting the notion of a general structure underlying species distribution patterns in the Gamtoos estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号