首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A model is constructed of the material in front of the star Cygnus OB2 no. 12 in which dense cores are embedded in diffuse clumps of gas. The model reproduces the measured abundances of C2 and CO, and predicts a column density of 91010 cm2 for HCO+.  相似文献   

2.
3.
4.
5.
The stability of C60 and C70 fullerenes in the interstellar medium deposited on dust surface or embedded in meteorites and comets has been simulated with γ irradiation and with He+ ion bombardment. It is shown by vibrational spectroscopy that a γ radiation dose of 2.6 MGy (1 Gy = 1 joule absorbed energy per kilogram) causes partial oligomerization of both C60 and C70 fullerenes. Oligomers are made by fullerene cages chemically connected each other which can yield back free fullerenes by a thermal treatment. The amount of irreversibly polymerized fullerenes caused by 2.6 MGy as deduced as the toluene insoluble fraction has been determined as 1.7 and 15 per cent by weight, respectively, for C60 and C70 fullerene. The radiation dose generated by radionuclides decay and expected to be delivered to fullerenes buried at a depth of more than 20 m in comets and meteorites is about 3 MGy per 109 yr. Since fullerenes are by far resistant to such radiation dose they can survive for at least some billion years inside comets and meteorites and in fact have been detected inside certain carbonaceous chondrites. On the other hand, the direct exposure of fullerenes to cosmic rays for instance when they are adsorbed or deposited on the surface of carbon dust corresponds to the delivery of a radiation dose comprised between 30 and 65 MGy per 109 yr. Experimental bombardment of both C60 and C70 fullerenes for instance with He+ ions has shown that the complete amorphization occurs at about 250 MGy. Thus in ∼4 Gyr exposure to cosmic rays it is expected a complete amorphization.  相似文献   

6.
We investigate the possibility of interstellar masers in transitions of the methanol isotopomers CH3OD, 13CH3OH and CH318OH, and of CH3SH. The model used, in which masers are pumped through the first and second torsionally excited states by IR radiation, has accounted successfully for the Class II masers in main species methanol, 12CH316OH. Several potential maser candidates are identified for CH3OD, their detectability depending on the enrichment of this species in star-forming regions. In 13CH3OH and CH318OH the best maser candidates are direct counterparts of the well-known 6.7- and 12.2-GHz methanol masers, but the lower interstellar abundance of these substituted species means that the expected brightness is greatly reduced. The maser candidates in CH3SH are also weak. By comparing these species we find that the large b -component of the dipole moment in methanol plays a significant role in its propensity to form masers, as does the strong torsion–rotation interaction due to the light hydroxyl frame. Thus the exceptional brightness of interstellar methanol masers is due to a favourable combination of molecular properties as well as high interstellar abundance.  相似文献   

7.
8.
9.
10.
The attempt to understand the temperature dependence of the HNC/HCN abundance ratio in interstellar clouds has been long standing and indecisive. In this paper we report quantum chemical and dynamical studies of two neutral–neutral reactions thought to be important in the formation of HNC and HCN, respectively – C+NH2→HNC+H, and N+CH2→HCN+H. We find that although these reactions do lead initially to the products suggested by astronomers, there is so much excess energy available in both reactions that the HCN and HNC products are able to undergo efficient isomerization reactions after production. The isomerization leads to near equal production rates of the two isomers, with HNC slightly favoured if there is sufficient rotational excitation. This result has been incorporated into our latest chemical model network of dense interstellar clouds.  相似文献   

11.
12.
Two Bok globules, L1253 (CB246) and CB34, have been mapped in the C2S (21–10) transition and in the NH3 (1, 1) and NH3 (2, 2) inversion transitions, respectively. By comparing the C2S map of L1253 (CB246) with the NH3 map of the same globule from Lemme et al., a clumped onion structure results as a consequence of the chemical and dynamical evolution of the object. From the derived parameters it appears that both L1253 (CB246) and CB34 are close to virial equilibrium.  相似文献   

13.
We present rate coefficients for rotational transitions induced in collisions between H2 molecules. Rotational levels J  ≤ 8 and kinetic temperatures T  ≤ 1000 K are considered. The interaction potential computed by Schwenke has been used, together with the quantal coupled channels method of calculating the cross-sections. Comparison is made with the more recent of previous results.  相似文献   

14.
The rates of rotational transitions for HCO+, the most abundant ion in interstellar space, induced by collision with helium are obtained for temperatures ranging from 10 to 80 K. The calculations are based on a new potential energy surface for the He–HCO+ interaction and on a scattering matrix whose accuracy was checked by pressure broadening and shift measurements. The rates     decrease for increasing values of j and  Δ j   , with a temperature trend depending on the energy involved in the transitions: if it is small, the rates are almost constant, while an increase with T is found for other cases. Comparison with previous and less accurate results shows an agreement within 50 per cent. Comparison between state-to-state and pressure broadening cross-sections allows us to discuss importance and influence of elastic and inelastic collisions.  相似文献   

15.
16.
17.
We have calculated synthetic spectra of perpendicular and parallel rovibronic bands of cumulene carbene molecules of the form C n H2. The perpendicular bands are consistent with a regularly spaced group of diffuse interstellar bands (DIBs) near 6850 Å. Parallel bands calculated for these molecular structures are consistent with the intrinsic profile of the associated 6614-Å DIB. Both types of bands are expected for an electronic transition that these species should have at those energies. We could not determine if the molecule was charged or if an atom other than carbon terminated the chain-end. Constraints due to molecular geometry and temperature place the chain length at 7–15 carbons to fit the 6850-Å group and 9–13 carbons to fit the 6614-Å DIB.  相似文献   

18.
The formation of H2 on a pristine olivine surface [forsterite (010)] is investigated computationally. Calculations show that the forsterite surface catalyzes H2 formation by providing chemisorption sites for H atoms. The chemisorption route allows for stepwise release of the reaction exothermicity and stronger coupling to the surface, which increases the efficiency of energy dissipation. This suggests that H2 formed on a pristine olivine surface should be much less rovibrationally excited than H2 formed on a graphite surface. Gas-phase H atoms impinging on the surface will first physisorb relatively strongly  ( E phys= 1240 K)  . The H atom can then migrate via desorption and re-adsorption, with a barrier equal to the adsorption energy. The barrier for a physisorbed H atom to become chemisorbed is equal to the physisorption energy, therefore there is almost no gas-phase barrier to chemisorption. An impinging gas-phase H atom can easily chemisorb  ( E chem= 12 200 K)  , creating a defect where a silicate O atom is protonated and a single electron resides on the surface above the adjacent magnesium ion. This defect directs any subsequent impinging H atoms to chemisorb strongly (39 800 K) on the surface electron site. The two adjacent chemisorbed atoms can subsequently recombine to form H2 via a barrier (5610 K) that is lower than the chemisorption energy of the second H atom. Alternatively, the adsorbed surface species can react with another incoming H atom to yield H2 and regenerate the surface electron site. This double chemisorption 'relay mechanism' catalyzes H2 formation on the olivine surface and is expected to attenuate the rovibrational excitation of H2 thus formed.  相似文献   

19.
The identity of the carriers of the diffuse interstellar bands (DIBs) is one of the most fascinating puzzles of modern spectroscopy. Over the last few years the number of known DIBs has grown substantially. In this paper we discuss the two recently discovered near-infrared weak interstellar features which have already been proposed as fingerprints of the buckminsterfullerene We present and discuss measurements of the two related DIBs within a larger sample of reddened targets, observed with different spectrometers, telescopes and site conditions. We provide additional arguments in favour of the interstellar origin of the two bands. We find evidence around the 9577-Å DIB of far-wing structures, which may affect broad-band measurements. We estimate corrections and errors for telluric and stellar blends, and show that the cores of the two DIBs are well correlated with a ratio near unity within 20 per cent. Finally, we discuss their relation to the laboratory spectra of and the search for two expected weaker transitions.  相似文献   

20.
The formation of molecular hydrogen  (H2)  in the interstellar medium takes place on the surfaces of dust grains. Hydrogen molecules play a role in gas-phase reactions that produce other molecules, some of which serve as coolants during gravitational collapse and star formation. Thus, the evaluation of the production rate of hydrogen molecules and its dependence on the physical conditions in the cloud are of great importance. Interstellar dust grains exhibit a broad size distribution in which the small grains capture most of the surface area. Recent studies have shown that the production efficiency strongly depends on the grain composition and temperature as well as on its size. In this paper, we present a formula that provides the total production rate of  H2  per unit volume in the cloud, taking into account the grain composition and temperature as well as the grain size distribution. The formula agrees very well with the master equation results. It shows that for a physically relevant range of grain temperatures, the production rate of  H2  is significantly enhanced due to their broad size distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号