首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Impact craters are formed by the displacement and ejection of target material. Ejection angles and speeds during the excavation process depend on specific target properties. In order to quantify the influence of the constitutive properties of the target and impact velocity on ejection trajectories, we present the results of a systematic numerical parameter study. We have carried out a suite of numerical simulations of impact scenarios with different coefficients of friction (0.0–1.0), porosities (0–42%), and cohesions (0–150 MPa). Furthermore, simulations with varying pairs of impact velocity (1–20 km s−1) and projectile mass yielding craters of approximately equal volume are examined. We record ejection speed, ejection angle, and the mass of ejected material to determine parameters in scaling relationships, and to calculate the thickness of deposited ejecta by assuming analytical parabolic trajectories under Earth gravity. For the resulting deposits, we parameterize the thickness as a function of radial distance by a power law. We find that strength—that is, the coefficient of friction and target cohesion—has the strongest effect on the distribution of ejecta. In contrast, ejecta thickness as a function of distance is very similar for different target porosities and for varying impact velocities larger than ~6 km s−1. We compare the derived ejecta deposits with observations from natural craters and experiments.  相似文献   

2.
Abstract— The Lockne and Tvären impact craters in Sweden formed in a marine environment during the Ordovician The contrast in density between the impact breccias and the surrounding target rock of these two craters is significantly lower than what has been found in craters formed in crystalline targets on land. Another marine‐target structure, the Estonian Kärdla structure, demonstrates intermediate contrast in impact breccia and target rock, which we attribute to the interpreted shallowness of the sea at the Kärdla impact site. We conclude that the main cause for these low‐density contrasts is pore and fracture filling of calcite with subordinate quartz and fluorite. Calcite is the most abundant cement, and its density differs most from that of fractured and brecciated bedrock with a low degree of cementation. Furthermore, from the studied cases, it is concluded that the target rock to impact rock contrast is generally the highest in craters formed on land in crystalline targets and the lowest in craters formed at sea, while craters formed on land in sedimentary targets are intermediate. The low density contrasts should decrease the negative gravity anomalies of marine craters.  相似文献   

3.
The influence of different projectile and target characteristics on the mass and velocity of high-velocity (>1 km/s) ejecta from impact craters is investigated numerically. The problem of how the computation accuracy affects the resulting ejection velocity distribution is considered.  相似文献   

4.
Abstract– The majority of meteorite impacts occur at oblique incidence angles. However, many of the effects of obliquity on impact crater size and morphology are poorly understood. Laboratory experiments and numerical models have shown that crater size decreases with impact angle, the along‐range crater profile becomes asymmetric at low incidence angles, and below a certain threshold angle the crater planform becomes elliptical. Experimental results at approximately constant impact velocity suggest that the elliptical threshold angle depends on target material properties. Herein, we test the hypothesis that the threshold for oblique crater asymmetry depends on target material strength. Three‐dimensional numerical modeling offers a unique opportunity to study the individual effects of both impact angle and target strength; however, a systematic study of these two parameters has not previously been performed. In this work, the three‐dimensional shock physics code iSALE‐3D is validated against laboratory experiments of impacts into a strong, ductile target material. Digital elevation models of craters formed in laboratory experiments were created from stereo pairs of scanning electron microscope images, allowing the size and morphology to be directly compared with the iSALE‐3D craters. The simulated craters show excellent agreement with both the crater size and morphology of the laboratory experiments. iSALE‐3D is also used to investigate the effect of target strength on oblique incidence impact cratering. We find that the elliptical threshold angle decreases with decreasing target strength, and hence with increasing cratering efficiency. Our simulations of impacts on ductile targets also support the prediction from Chapman and McKinnon (1986) that cratering efficiency depends on only the vertical component of the velocity vector.  相似文献   

5.
Abstract The Campo del Cielo meteorite crater field in Argentina contains at least 20 small meteorite craters, but a recent review of the field data and a remote sensing study suggest that there may be more. The fall occurred ~4000 years ago into a uniform loessy soil, and the craters are well enough preserved so that some of their parameters of impact can be determined after excavation. The craters were formed by multi-ton fragments of a type IA meteoroid with abundant silicate inclusions. Relative to the horizontal, the angle of infall was ~9°. Reflecting the low angle of infall, the crater field is elongated with apparent dimensions of 3 × 18.5 km. The largest craters are near the center of this ellipse. This suggests that when the parent meteoroid broke apart, the resulting fragments diverged from the original trajectory in inverse relation to their masses and did not undergo size sorting due to atmospheric deceleration. The major axis of the crater field as we know it extends along N63°E, but the azimuths of infall determined by excavation of Craters 9 and 10 are N83.5°E and N75.5°E, respectively. This suggests that the major axis of the crater field is not yet well determined. The three or four largest craters appear to have been formed by impacts that disrupted the projectiles, scattering fragments around the outsides of the craters and leaving no large masses within them; these are relatively symmetrical in shape. Other craters are elongated features with multi-ton masses preserved within them and no fragmentation products outside. There are two ways in which field research on the Campo del Cielo crater field is found to be useful. (1) Studies exist that have been used to interpret impact craters on planetary surfaces other than the Earth. This occurrence of a swarm of projectiles impacting at known angles and similar velocities into a uniform target material provides an excellent field site at which to test the applicability of those studies. (2) Individual craters at Campo del Cielo can yield the masses of the projectiles that formed them and their velocities, angles and azimuths of impact. From these data, there is a possibility to estimate parameters for the parent meteoroid at entry and, thus, learn enough about its orbit to judge whether or not it was compatible with an asteroidal origin. Preliminary indications are that it was. Campo del Cielo is a IA iron meteorite and Sikhote-Alin, an observed fall, is a IIB iron meteorite in Wasson's classification. The Sterlitamak iron, also an observed fall, is a medium octahedrite in the Prior-Hey classification. It would be interesting to compare their orbital parameters.  相似文献   

6.
Since the 1960s, hypervelocity impact experiments have been conducted to study the complex deformation mechanisms which occur in the subsurface of meteorite craters. Here, we present ultrasound tomography measurements of the damage zone underneath seven experimentally produced impact craters in sandstone cubes. Within the framework of the Multidisciplinary Experimental and Modeling Impact Research Network and the NEOShield Project, decimeter-sized sandstone targets were impacted by aluminum and steel projectiles with radii of 2.5, 4, and 5 mm at velocities between ~3.0 and ~7.4 km s−1. The 2-D ultrasound tomography clearly shows a correlation between impact energy and the damaged volume within the target blocks. When increasing impact energies from 805 to 2402 J, a corresponding increase in the damage radius from ~13.1 cm to ~17.6 cm was calculated. p-Wave velocity reductions up to 18.3% (for the highest impact energy) were observed in the vicinity of the craters. The reduction in seismic velocity decreased uniformly and linearly with increasing distance from the impact point. The damage intensities correspond to peak damage parameters of 0.4–0.51 compared to undamaged target blocks. In addition to the damage zone below the crater, we could identify weakened zones at the sandstone walls which represent precursors of spalling. The volume of the damaged subsurface beneath experimentally produced craters determined through ultrasound tomography is larger than that obtained from previously reported p-wave velocity reductions or to microscopic and microcomputed tomography observations of crack densities in experimentally produced craters.  相似文献   

7.
Comparing craters of identical diameter on a planet is an empirical method of studying the effects of different target and impactor properties while holding total impact energy nearly constant. We have analyzed the Martian crater population within a narrow diameter range (7 km < crater diameter < 9 km) at the simple‐complex crater transition using three approaches. We looked for correlations of morphology with surface geology using a global crater database and global geologic map. We examined selected regions in detail with high‐resolution images to further understand the relationship between crater morphology and bulk target properties. Finally, we examined craters in close proximity to each other in order to hold target properties constant, so that we could isolate impactor effects on crater morphology. We found a strong correlation between target properties and interior crater morphology, and we found little evidence that impactor properties (other than impact angle) affect crater appearance. Central uplift and wall slumping are enhanced for less consolidated targets. Layered targets affected both the excavation and modification stages of complex crater formation; the resulting craters have pseudoterraces, flat floors, and central pits.  相似文献   

8.
From a consideration of equations describing the supersonic impact of a solid body on to a solid target, the difference between final crater depth and distance vertically below the original impact at which the rarefaction wave front, resulting from the reflection of the backward propagating shock wave in the meteorite, first intersects the forward travelling shock wave front in the target has been determined. A correlation between this difference and the height of central peak features in the majority of fresh lunar craters has been established. On the basis of this, it is proposed that the intersection of these two wave fronts locally inhibits the ejection of material from behind the shock front during the excavation phase of crater formation, leading to the appearance of a centrally located peak of uplifted material. Subsequent post-impact development of the interior morphological features has been shown to be consistent with the size-scale of development of complex crater features on the lunar and other planetary surfaces. By considering only craters which exhibit this correlation, a scaling between peak height and impact energy has been derived.  相似文献   

9.
Abstract— Mars Global Surveyor (MGS) and Mars Odyssey data are being used to revise the Catalog of Large Martian Impact Craters. Analysis of data in the revised catalog provides new details on the distribution and morphologic details of 6795 impact craters in the northern hemisphere of Mars. This report focuses on the ejecta morphologies and central pit characteristics of these craters. The results indicate that single‐layer ejecta (SLE) morphology is most consistent with impact into an ice‐rich target. Double‐layer ejecta (DLE) and multiple‐layer ejecta (MLE) craters also likely form in volatile‐rich materials, but the interaction of the ejecta curtain and target‐produced vapor with the thin Martian atmosphere may be responsible for the large runout distances of these ejecta. Pancake craters appear to be a modified form of double‐layer craters where the thin outer layer has been destroyed or is unobservable at present resolutions. Pedestal craters are proposed to form in an icerich mantle deposited during high obliquity periods from which the ice has subsequently sublimated. Central pits likely form by the release of vapor produced by impact into ice‐soil mixed targets. Therefore, results from the present study are consistent with target volatiles playing a dominant role in the formation of crater morphologies found in the Martian northern hemisphere.  相似文献   

10.
Most impacts occur at an angle with respect to the horizontal plane. This is primarily reflected in the ejecta distribution, but at very low angle structural asymmetries such as elongation of the crater and nonradial development of the central peak become apparent. Unfortunately, impact craters with pristine ejecta layers are rare on Earth and also in areas with strong past or ongoing surface erosion on other planetary bodies, and the structural analysis of central peaks requires good exposures or even on‐site access to outcrop. However, target properties are known to greatly influence the shape of the crater, especially the relatively common target configuration of a weaker layer covering a more rigid basement. One such effect is the formation of concentric craters, i.e., a nested, deeper, inner crater surrounded by a shallow, outer crater. Here, we show that with decreasing impact angle there is a downrange shift of the outer crater with respect to the nested crater. We use a combination of (1) field observation and published 3‐D numerical simulation of one of the best examples of a terrestrial, concentric impact crater formed in a layered target with preserved ejecta layer: the Lockne crater, Sweden; (2) remote sensing data for three pristine, concentric impact craters on Mars with preserved ejecta layers further constraining the direction of impact; as well as (3) laboratory impact experiments, to develop the offset in crater concentricity into a complementary method to determine the direction of impact for layered‐target craters with poorly preserved ejecta layers.  相似文献   

11.
Multi-ring impact basins have been found on the surfaces of almost all planetary bodies in the Solar system with solid crusts. The details of their formation mechanism are still unclear. We present results of our numerical modeling of the formation of the largest known terrestrial impact craters. The geological and geophysical data on these structures accumulated over many decades are used to place constraints on the parameters of available numerical models with a dual purpose: (i) to choose parameters in available mechanical models for the crustal response of planetary bodies to a large impact and (ii) to use numerical modeling to refine the possible range of original diameters and the morphology of partially eroded terrestrial craters. We present numerical modeling results for the Vredefort, Sudbury, Chicxulub, and Popigai impact craters and compare these results with available geological and geophysical information.  相似文献   

12.
Abstract— Observations of impact craters on Earth show that a water column at the target strongly influences lithology and morphology of the resultant crater. The degree of influence varies with the target water depth and impactor diameter. Morphological features detectable in satellite imagery include a concentric shape with an inner crater inset within a shallower outer crater, which is cut by gullies excavated by the resurge of water. In this study, we show that if oceans, large seas, and lakes existed on Mars for periods of time, marine‐target craters must have formed. We make an assessment of the minimum and maximum amounts of such craters based on published data on water depths, extent, and duration of putative oceans within “contacts 1 and 2,” cratering rate during the different oceanic phases, and computer modeling of minimum impactor diameters required to form long‐lasting craters in the seafloor of the oceans. We also discuss the influence of erosion and sedimentation on the preservation and exposure of the craters. For an ocean within the smaller “contact 2” with a duration of 100,000 yr and the low present crater formation rate, only ?1–2 detectable marine‐target craters would have formed. In a maximum estimate with a duration of 0.8 Gyr, as many as 1400 craters may have formed. An ocean within the larger “contact 1‐Meridiani,” with a duration of 100,000 yr, would not have received any seafloor craters despite the higher crater formation rate estimated before 3.5 Gyr. On the other hand, with a maximum duration of 0.8 Gyr, about 160 seafloor craters may have formed. However, terrestrial examples show that most marine‐target craters may be covered by thick sediments. Ground penetrating radar surveys planned for the ESA Mars Express and NASA 2005 missions may reveal buried craters, though it is uncertain if the resolution will allow the detection of diagnostic features of marine‐target craters. The implications regarding the discovery of marine‐target craters on Mars is not without significance, as such discoveries would help address the ongoing debate of whether large water bodies occupied the northern plains of Mars and would help constrain future paleoclimatic reconstructions.  相似文献   

13.
Impact craters on the lunar surface have a variety of morphometric characteristics that are very useful in understanding the evolutionary history of lunar landscape morphologies. Based on digital elevation model data and photographs from China’s Chang’E-1 lunar orbiter, we develop morphologic parameters and quantitative methods for presenting the morphometric characteristics of impact craters, analyzing their relational distribution, and estimating the relative order of their formation. We also analyze features in profile where craters show signs of having formed on the edge of previously existing craters to show that superimposed impacts affect morphologic reconstructions. As a result, impact craters have significant effects on the reconstruction of ancient topography and the estimation of relative formation ages.  相似文献   

14.
V-shaped ridge components of the herringbone pattern associated with lunar secondary crater chains have been simulated by simultaneous and nearly simultaneous impact of two projectiles near one another. The impact velocities and angles of the projectiles were similar to those of the fragments that produced secondary craters found at various ranges from large lunar craters.Variables found to affect the included angles of the V-shaped ridges are: relative time of impact of the projectiles, impact angle, relative projectile mass, and azimuth angle of the crater chain relative to the projection of the flight line onto the target surface. The functional relationships between the forms of the ridges and many of these variables are similar to those observed for lunar V-shaped ridges.Comparison of the magnitudes of the ridge angles of both laboratory crater pairs and secondary crater chains of the crater Copernicus implies that material was ejected from Copernicus at angles in excess of 60°, measured from the normal, to form many of Copernicus' satellitic craters. Moreover, other independent calculations presented indicate that many of the fragments that produced secondary craters also ricocheted to produce tertiary craters.Application of the study to identification of isolated secondary craters and to the determination of the origin of large lunar craters is discussed.  相似文献   

15.
The Campo del Cielo impact structure exhibits several penetration funnels and impact craters. Here, we model the formation of these funnels with pre-impact conditions consistent with the results of meteoroid entry models. We study vertical impacts to find the dependence of funnel geometry (depth, diameter) on impact velocity and target porosity. At velocities above 1 km s−1, we observe strong deformation of the projectile and transformation of funnels into regular impact craters. We also use 3-D impact models to study oblique impacts and find that in the case of impact angles <25° to the horizon, the projectile bounces off the target. Instead of a funnel, an elongated groove forms, while the fragmented projectile escapes and moves farther downrange. At steeper impact angles, funnels form with the projectile at its tip. Early interpretations of the Campo del Cielo impact angle at 9–10° were based on (i) an oversimplified atmospheric model allowing “correct” strewn field elongation and (ii) the results of excavation in which the sloping boundary between breccia-like materials and infilling loess was interpreted as a true crater floor and its slope was equated to the impact angle. As our models show, the projectile trajectory within the target is not a straight line, and the angle to horizon changes from a steep one at the impact point to zero and then to a negative value (the projectile is moving upward). We also model two impact craters (Hoyo de la Cañada and Laguna Negra) created by high-velocity fragments to demonstrate the projectile remnants ricochet in the downrange direction.  相似文献   

16.
New crater size-shape data were compiled for 221 fresh lunar craters and 152 youthful mercurian craters. Terraces and central peaks develop initially in fresh craters on the Moon in the 0–10 km diameter interval. Above a diameter of 65 km all craters are terraced and have central peaks. Swirl floor texture is most common in craters in the size range 20–30 km, but it occurs less frequently as terraces become a dominant feature of crater interiors. For the Moon there is a correlation between crater shape and geomorphic terrain type. For example, craters on the maria are more complex in terms of central peak and terrace detail at any given crater diameter than are craters in the highlands. These crater data suggest that there are significant differences in substrate and/or target properties between maria and highlands. Size-shape profiles for Mercury show that central peak and terrace onset is in the 10–20 km diameter interval; all craters are terraced at 65 km, and all have central peaks at 45 km. The crater data for Mercury show no clear cut terrain correlation. Comparison of lunar and mercurian data indicates that both central peaks and terraces are more abundant in craters in the diameter range 5–75 km on Mercury. Differences in crater shape between Mercury and the Moon may be due to differences in planetary gravitational acceleration (gMercury=2.3gMoon). Also differences between Mercury and the Moon in target and substrate and in modal impact velocity may contribute to affect crater shape.  相似文献   

17.
We present results from a number of 2D high-resolution hydrodynamical simulations of asteroids striking the atmosphere of Venus. These cover a wide range of impact parameters (velocity, size, and incidence angle), but the focus is on 2-3 km diameter asteroids, as these are responsible for most of the impact craters on Venus. Asteroids in this size range are disintegrated, ablated, and significantly decelerated by the atmosphere, yet they retain enough impetus to make large craters when they meet the surface. We find that smaller impactors (diameter <1-2 km) are better described by a "pancaking" model in which the impactor is compressed and distorted, while for larger impactors (>2-3 km) fragmentation by mechanical ablation is preferred. The pancaking model has been modified to take into account effects of hydrodynamical instabilities. The general observation that most larger impactors disintegrate by shedding fragments generated from hydrodynamic instabilities spurs us to develop a simple heuristic model of the mechanical ablation of fragments based on the growth rates of Rayleigh-Taylor instabilities. Although in principle the model has many free parameters, most of these have little effect provided that they are chosen reasonably. In practice the range of model behavior can be described with one free parameter. The resulting model reproduces the mass and momentum fluxes rather well, doing so with reasonable values of all physical parameters.  相似文献   

18.
We determined the morphologies and dimensions of possible impact craters on the surface of Asteroid 25143 Itokawa from images taken by the Hayabusa spacecraft. Circular depressions, circular features with flat floors or convex floors, and circular features with smooth surfaces were identified as possible craters. The survey identified 38 candidates with widely varying morphologies including rough, smooth and saddle-shaped floors, a lack of raised rims and fresh material exposures. The average depth/diameter ratio was 0.08±0.03: these craters are very shallow relative to craters observed on other asteroids. These shallow craters are a result of (1) target curvature influencing the cratering process, (2) raised rim not being generated by this process, and (3) fines infilling the craters. As many of the crater candidates have an unusual appearance, we used a classification scheme that reflects the likelihood of an observed candidate's formation by a hypervelocity impact. We considered a variety of alternative interpretations while developing this scheme, including inherited features from a proto-Itokawa, spall scars created by the disruption of the proto-Itokawa, spall scars following the formation of a large crater on Itokawa itself, and apparent depressions due to random arrangements of boulders. The size-frequency distribution of the crater candidates was close to the empirical saturation line at the largest diameter, and then decline with decreasing diameter.  相似文献   

19.
Abstract— The 45-km diameter Montagnais impact structure, Nova Scotia, Canada, is characterized by a positive, circular 8 mGal gravity anomaly associated with its central uplift. The negative gravity anomaly, which is expected for a complex crater of this size, is not observed within the structure, and magnetic data lack any well-defined, crater-related signature. The absence of a negative gravity anomaly implies that no low-density zone generally related to fracturing and brecciation exists. Since Montagnais appears well preserved, this zone has not been removed by erosion. Its formation may have been impeded due to the lack of competency in the target rocks. The crater was formed in a shallow marine environment where the lack of strength in the unconsolidated sediments may have prevented the preservation of voids and fractures that cause a negative gravity anomaly as observed over other impact craters. Additionally, the efficient absorption of impact energy by unconsolidated target material may have inhibited fracture/void development. Although the gravity signature of impact craters formed on land is well known, structures occurring in unconsolidated target material, such as continental shelf environments, constitute another signature that should also be recognized.  相似文献   

20.
The existence of large terrestrial impact crater doublets and Martian crater doublets that have been inferred to be impact craters demonstrates that simultaneous impact of two or more bodies occurs at nearly the same point on planetary surfaces. An experimental study of simultaneous impact of two projectiles near one another shows that doublet craters with ridges perpendicular to the bilateral axis of symmetry result when separation between impact points relative to individual crater diameter is large. When separation is progressively less, elliptical craters with central ridges and central peaks, circular craters with flat floors containing ridges and peaks, and circular craters with deep round bottoms are produced. These craters are similar in structure to many of the large lunar craters. Results suggest that the simultaneous impact of meteoroids near one another may be an important mechanism for the production of central peaks in large lunar craters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号