共查询到16条相似文献,搜索用时 78 毫秒
1.
利用交叉点不符值对GOCE卫星重力梯度数据进行精度评定 总被引:1,自引:0,他引:1
研究了基于GOCE卫星轨迹交叉点不符值的SGG数据精度评定方法,针对经典评定公式评价精度偏低的不足,提出了修正的精度评定公式;分析了系统误差对上述评定方法的影响,针对尺度因子会同比例放大或缩小精度评定结果,建议利用现有的重力场模型对尺度因子进行预先标定。模拟计算结果表明,无系统误差情况下,经典评定公式评价出的数据精度比实际精度偏低,相对误差约13%,而利用本文提出的修正公式可较准确地估计数据精度,相对误差降至5%。有系统误差情况下,利用现有的重力场模型可较为准确地标定尺度因子,其标定相对误差最大值不超过2%,平均值在0.9%左右。在此基础上,利用修正公式进行数据精度评定,其结果与无系统误差情况下的结果相差无几,相对误差也在5%。 相似文献
2.
GOCE(gravity field and steady-state ocean circulation explorer)计划的主要科学目标是以70 km空间分辨率1、mGal重力异常和1~2 cm大地水准面的精度测定全球静态地球重力场,卫星重力梯度测量数据的预处理是实现这一预期科学目标的重要任务之一。讨论了重力梯度测量数据的预处理方案、时变重力场信号改正、粗差探测和外部校准方法,为进一步开展GOCE卫星重力梯度测量数据的预处理研究提供参考和具体建议。 相似文献
3.
在地球重力场和海洋环流探测卫星GOCE(Gravity field and Ocean Circulation Explorer)的观测数据中,其主要的观测量重力梯度数据不仅与搭载的6个加速度计的测量值有关,而且还与卫星自身的自转角速度存在着二次函数关系.由于加速度计测量频段的限制,这样就导致了卫星姿态的低频误差混入到... 相似文献
4.
5.
联合GOCE卫星轨道和重力梯度数据严密求解重力场的模拟研究 总被引:1,自引:0,他引:1
论述了联合卫星轨道和重力梯度数据严密求解重力场的方法及数据处理方案,研究了GOCE重力场反演中有色噪声的AR去相关滤波、病态法方程的Kaula正则化和观测值最优加权的方差分量估计等关键问题。模拟结果表明:①极空白问题会降低法方程求解的稳定性,导致低次位系数的求解精度较低,而Kaula正则化可有效用于GOCE病态法方程的求解,并得到合理稳定的解;②重力梯度有色噪声会降低GOCE重力场求解的整体精度,特别是对低阶位系数的影响最为明显,而AR去相关滤波法可有效处理有色噪声,但解算结果仍含有低频误差;③方差分量估计可有效确定SST和SGG两类观测值的最优权比,并且有色噪声造成的低频误差经过联合求解后得到了抑制;④利用30d、5s采样的GOCE模拟数据恢复200阶次的重力场模型,其大地水准面和重力异常精度在纬度±83°范围内分别为±3.81cm和±1.056mGal。 相似文献
6.
GOCE卫星任务搭载了高灵敏度的重力梯度仪,其观测值用于恢复高精度高分辨率的地球重力场。本文利用EIGEN-5C、EGM2008、GOTIM3、GGM03S高精度全球重力场模型,确定了GOCE引力梯度张量的对角分量观测值(Vxx、Vyy、Vzz)的校准参数,分析了比例因子的稳定性,并讨论了相同模型不同阶次、同阶次不同模型以及是否估计漂移参数对比例因子、偏差参数及校准观测值的影响。研究表明比例因子的稳定性在10-4的量级,利用250阶的EIGEN-5C模型和EGM2008模型校准得到观测值的差异小于10-4 E,远远小于观测误差,以1d为周期估计校准参数时,是否估计漂移对校准结果的影响达到0.4E。同时,校准前后观测值差异的频谱说明校准过程主要影响Vxx、Vyy、Vzz观测值的低频部分,即来自先验重力场模型的中低(150)阶次,考虑到GOCE引力梯度的观测频带,校准后的观测值可用于恢复中高频的重力场信号。 相似文献
7.
地球重力场和海洋环流探测(gravity field and steady-state ocean circulation explorer,GOCE)卫星重力梯度数据有色噪声和低频系统误差的滤波处理是反演高精度地球重力场的一个关键问题。针对GOCE卫星重力梯度数据的滤波处理,基于移动平均(moving average,MA)方法和CPR(circle per revolution)经验参数方法设计了两类低频系统误差滤波器,并分别将这两类滤波器与基于自回归移动平均(auto-regressive and moving average,ARMA)模型设计的有色噪声滤波器组合起来形成级联滤波器。为了分析滤波器处理的实际效果,基于空域最小二乘法采用70 d的GOCE观测数据,并联合重力恢复与气候实验(gravity recovery and climate experiment,GRACE)数据分别反演了224阶次的重力场模型GOGR-MA(MA+ARMA级联滤波)和GOGR-CPR(CPR+ARMA级联滤波)。将反演模型与采用同期数据求解的第一代GOCE系列模型及GOCE和GRACE联合模... 相似文献
8.
卫星重力梯度数据的模拟研究 总被引:2,自引:1,他引:2
推导了运用地球重力场模型计算单点、格网点以及格网平均的扰动重力梯度复组合分量的公式;提出了广义球谐函数及其定积分的新算法,并利用EGM96地球重力场模型试算了全球地区卫星轨道面上的重力梯度分量的格网平均观测值;通过对角线分量满足Laplace方程的精度,验证了该算法的有效性和实用性。 相似文献
9.
推导了运用地球重力场模型计算单点、格网点以及格网平均的扰动重力梯度复组合分量的公式;提出了广义球谐函数及其定积分的新算法,并利用EGM96地球重力场模型试算了全球地区卫星轨道面上的重力梯度分量的格网平均观测值;通过对角线分量满足Laplace方程的精度,验证了该算法的有效性和实用性。 相似文献
10.
基于原子干涉测量技术的卫星重力梯度测量 总被引:3,自引:0,他引:3
原子干涉测量技术的发展促进了重力梯度仪技术的发展,使得在测量地球重力场方面有了新的方法,从而能够获得更高分辨率和精度的重力场信息。介绍原子干涉测量技术的基本原理和发展现状,对利用原子干涉重力梯度仪进行卫星重力测量的优势和可行性进行分析。 相似文献
11.
卫星重力梯度观测数据的时变信号影响分析 总被引:1,自引:0,他引:1
系统地讨论了时变重力中潮汐信号与非潮汐信号对GOCE卫星重力梯度观测数据的影响。结果表明:(1)时变改正的量级为0.1 mE,比GOCE卫星设计精度(3.2 mE)低,但其为有色噪声,在数据预处理中必须剔除;(2)潮汐影响(0.1 mE)比非潮汐影响(0.01 mE)要高一个量级,决定着时变重力改正的精度。将本文计算结果与GOCE官方公布结果进行对比,二者具有较好一致性,验证了本文计算方法及结果的有效性。 相似文献
12.
测定地球重力场,确定高分辨率的静态地球重力场模型,是大地测量学的主要任务之一.重力场的影响主要分为潮汐部分和非潮汐部分,天文潮汐在潮汐部分中属于直接引力效应,对重力场的影响是不可忽略的.本文以一个月的星历数据为基础,分析了天文潮汐对GOCE卫星重力梯度观测数据的影响,并统计了最大值和最小值;研究了天文潮汐对地球上单点重力梯度数据的影响特征;计算了各行星对卫星重力梯度数据影响量级.研究结果表明:天文潮汐对卫星重力梯度数据的影响量级处于0.1mE,比GOCE卫星设计精度低一个量级,但是它具有周期性,属于有色噪声,因此在卫星重力梯度数据预处理中需要扣除;天文潮汐对卫星重力梯度数据各分量的影响不同,其中对角线分量Vxx,Vyy和Vzz要比其他分量略大;月球和太阳对卫星重力梯度数据的影响最大,在所有星体中占据主导地位. 相似文献
13.
提出利用地面重力异常数据计算地面扰动位径向二阶梯度,将该梯度的积分表达式转换为卷积形式的谱表达式,便于应用FFT/FHT技术进行快速计算。这一将地面重力异常化为重力梯度的实用算法为将卫星重力梯度和航空重力梯度观测数据与地面重力数据的联合处理提供了一种有效途径。最后,以本文导出的数学模型为基础,给出了模型(WDM94)数据的试算结果并作了分析。 相似文献
14.
卫星重力径向梯度数据的最小二乘配置调和分析 总被引:1,自引:2,他引:1
本文深入研究了利用卫星重力梯度径向分量确定地球引力场位系数的最小二乘配置(LSC)调和分析方法。首先论述了最小二乘配置法的原理,推导了扰动引力梯度观测量与球谐系数之间的协方差和自协方差矩阵,在扰动引力梯度观测数据为等经差规则网格数据的情况下,引力位与扰动引力梯度之间的协方差矩阵具有分块Toeplitz循环阵的结构,有效的利用FFT变换技术将其降阶;研究利用截断奇异值分解法(TSVD)解决协方差阵的病态性问题;最后得到了引力梯度径向分量的最小二乘配置调和分析的完整计算公式。模拟试算结果表明,基于TSVD的最小二乘配置调和分析方法,能够以较高的精度还原全球重力场,验证了本文算法的有效性和实用性。 相似文献
15.
本文论述了最小二乘过程中有色噪声的处理方法,提出使用AR模型对GOCE梯度观测值中的有色噪声进行时域滤波,数值模拟结果验证了该方法的有效性。利用数值模拟验证了直接求逆方法和PCCG法求解大型法方程的有效性,后者的效率远远高于前者。联合加入噪声(有色噪声和白噪声)的卫星重力梯度张量径向分量观测值Vzz和SST观测值,分别使用空域最小二乘法和SA方法恢复了180阶全球重力场模型,前者求解重力场模型的大地水准面和重力异常在180阶次的精度分别为3.01cm和0.75mGal,优于SA方法求解模型的精度。 相似文献
16.
欧空局早期公布的时域法和空域法解算的GOCE模型均采用能量守恒法处理轨道数据, 但恢复的长波重力场信号精度较低, 而且GOCE卫星在两极存在数据空白, 利用其观测数据恢复重力场模型是一个不适定问题, 导致解算的模型带谐项精度较低, 需进行正则化处理。本文分析了基于轨道数据恢复重力场模型的方法用于处理GOCE数据的精度, 对最优正则化方法和参数的选择进行研究。利用GOCE卫星2009-11-01—2010-01-31共92 d的精密轨道数据, 采用不依赖先验信息的能量守恒法、短弧积分法和平均加速度法恢复GOCE重力场模型, 利用Tikhonov正则化技术处理病态问题。结果表明, 平均加速度法恢复模型的精度最高, 能量守恒法的精度最低, 短弧积分法的精度稍差于平均加速度法。未来联合处理轨道和梯度数据时, 建议采用平均加速度法或短弧积分法处理轨道数据, 并且轨道数据可有效恢复120阶次左右的模型。Kaula正则化和SOT处理GOCE病态问题的效果最好, 并且两者对应的最优正则化参数基本一致, 但利用正则化技术不能完全抑制极空白问题的影响, 需要联合GRACE等其他数据才能获得理想的结果。 相似文献