共查询到20条相似文献,搜索用时 78 毫秒
1.
基于样本自动选择与SVM结合的海岸线遥感自动提取 总被引:4,自引:0,他引:4
利用卫星遥感手段自动、快速、准确地测定海岸线动态信息是遥感应用的一个重要领域,对海域管理规划具有重要意义.由于近岸水体光谱特征受区域环境影响较大,在水陆分离过程中,利用传统的归一化差值水体指数(normalized difference water index,NDWI)阈值分割法时,一部分近岸水体易被错分为陆地,严重影响了岸线提取精度.为此,在NDWI模型的基础上,提出了基于样本自动选择与支持向量机(support vector machine,SVM)的海岸线遥感自动提取算法.首先进行NDWI计算与全局阈值分割,实现水体信息的初步提取;再通过NDWI信息控制初始样本的自动选择;然后利用SVM分类器对水体再次分类,实现海陆分离;最后填充小的陆地水体单元,实现岸线自动跟踪.实验结果表明,该方法能有效增强对近岸水体的识别能力,提高海岸线遥感提取的精度和自动化程度. 相似文献
2.
基于最佳波段组合的高光谱遥感影像分类 总被引:6,自引:0,他引:6
针对高光谱数据维数高、数据量大、信息冗余多、波段相关性强等特点,在综合各种数据降维方法的基础上,提出一种基于最佳波段组合的高光谱遥感影像分类方法。以美国印第安纳州地区的AVIRIS数据为例,分析各波段信息量和相邻波段的相关性,利用子空间划分、分段波段指数选择法,进行特征波段的选择;并针对难区分地物类别,应用J-M距离模型对其可分性进行判别,获得最佳波段组合。最后采用支持向量机分类器进行分类。实验结果表明,采用最佳波段组合方法,可以有效地提高高光谱的分类精度。 相似文献
3.
4.
5.
6.
7.
文章提出了一种结合改进的最佳指数法(OIF)和支持向量机(SVM)进行高光谱遥感影像分类新方法.利用本文提出的稳定系数进行波段初选择,根据相关系数选择波段组合生成新影像,并对新影像进行OIF计算,得到OIF值最大的波段组合为最佳波段组合;构建SVM分类器,对最佳波段组合分类;最后将分类结果与其他监督分类方法比较,并在相同核函数下与PCA和SVM结合的方法进行精度比较分析.实验结果表明,本文方法能够有效提取最佳波段组合,在SVM算法下获得较高分类精度. 相似文献
8.
利用主题模型的遥感图像场景分类 总被引:1,自引:0,他引:1
提出了一种基于主题模型与特征组合相结合的遥感图像分类方法。该方法首先对图像进行尺度不变特征变换(SIFT)、几何模糊特征(GB)和颜色直方图特征(CH)提取,接着利用潜在概率语义分析(pLSA)模型分别对所得到的图像特征进行潜在主题的挖掘,然后对所得到的主题概率特征进行组合,最后利用支持向量机(SVM)分类器进行场景分类。实验表明,与传统分类方法相比,主题模型更具优势;与使用单特征相比,特征组合具有更高的分类准确率。 相似文献
9.
10.
《地理空间信息》2017,(4)
天绘一号是我国第一代传输型立体测绘卫星,主要用于科学研究、国土资源普查、地图测绘等领域的科学实验任务。以天绘影像为实验数据,利用面向对象的影像分割技术,通过选择合适的尺度参数对影像进行分割。结合SVM对得到的影像对象层进行分类实验。具体分析了SVM分类器核函数的选择以及参数的设置对分类精度的影响。最终分类实验结果的总体精度为90.857 1%,Kappa系数为0.858 1。将分类结果与传统基于像元的马氏距离分类法和最大似然值分类法的分类结果进行比较,总体精度分别提高了约29.29%、5.91%,Kappa系数分别提高了约0.35、0.06。实验结果表明,面向对象的SVM分类法不仅对影像分类的精度有大幅度的提高,同时,也很好地解决了传统基于像素分类法出现的"椒盐"现象,是一种很有优势的影像分类法。 相似文献
11.
12.
高光谱遥感影像分类研究进展 总被引:4,自引:0,他引:4
随着模式识别、机器学习、遥感技术等相关学科领域的发展,高光谱遥感影像分类研究取得快速进展。本文系统总结和评述了当前高光谱遥感影像分类的相关研究进展,在总结分类策略的基础上,重点从以核方法为代表的新型分类器设计、特征挖掘、空间-光谱分类、基于主动学习和半监督学习的分类、基于稀疏表达的分类、多分类器集成六个方面对高光谱影像像素级分类最新研究进行了综述。针对今后的研究方向,指出高光谱遥感影像分类一方面要适应大数据、智能化高光谱对地观测的发展前沿,继续引入机器学习领域的新理论、新方法,综合利用多源遥感数据、多维特征空间互补的优势,提高分类精度、分类器泛化能力和自动化程度;另一方面要关注高光谱遥感应用的需求,突出高光谱遥感记录精细光谱特征的优势,针对应用需求发展有效的分类方法。 相似文献
13.
改进支持向量机的高分遥感影像道路提取 总被引:2,自引:0,他引:2
针对支持向量机受分类数的限制在高分辨率遥感影像中无法直接获取高精度道路网信息的问题,该文提出一种新的混合的基于支持向量机的方法:首先,利用模糊C均值聚类方法将输入的遥感影像分为3类,以减少支持向量机的错分现象;其次,运用支持向量机将不同类别的像素分为道路类和非道路类;最后,应用马尔科夫随机场对分类结果进行噪声去除,并采用形态学进行后处理,进而得到精确道路网信息。实验结果表明:该算法不仅能够从高分辨率遥感影像中提取出道路网,而且精度优于直接使用支持向量机算法以及对比算法。 相似文献
14.
提出"全域-局部"遥感信息分布提取模型,通过计算和整合影像局部范围内的空间和光谱特征来优化全域上光谱混淆较大像元的提取精度。模型分为两个主要计算步骤:"全域"前分类与"局部"后分类;"全域"前分类将仅划分出满足一定精度阈值标准的像元,而"局部"后分类则在此部分分类结果基础上,进一步发掘和计算已分类像元所蕴含的信息来辅助对全域未分类像元的提取。在不透水面专题提取过程中,采用支持向量机SVM作为前分类器,通过控制精度阈值所对应的分类后验概率产生部分分类结果;采用调节最小距离分类器作为后分类器,根据一定的权重整合像元局部范围内的空间与光谱信息,代替了传统的全域光谱信息来优化分类。实验采用TM5影像以及所对应的NLCD(National Land Cover Data)标准不透水面产品作为测试集,"全域-局部"模型对应单一SVM模型的提取精度由80.31%提高为82.73%,局部后分类器精度较单一SVM模型由54.27%提高到59.94%。实验证明该模型具有较明显的精度提升且能够较好地解决不透水面与裸土混淆的问题,并得到空间形态上更为完善的不透水面提取结果。 相似文献
15.
16.
喜马拉雅山地区冰湖信息的遥感自动化提取 总被引:12,自引:0,他引:12
在“全域—局部”分步迭代水体信息提取方法的基础上, 通过对水体信息提取指标——水体指数的物理特性的分析实现了算法中全域阈值的自动选择与局部阈值的自适应调整, 并结合DEM 生成的山体坡度和阴影信息,减少局部迭代过程中对其他地表特征与水体信息的误判。在此基础上, 建立一种适合于高山地区冰川湖泊的自动化提取方案。试验采用Landsat 数据对喜马拉雅山地区的冰川湖泊进行信息提取, 结果表明该方法能够快速准确地完
成大区域范围内的冰川湖泊制图, 并能最大程度地消除高山地区湖泊水体识别中冰川和山体阴影的影响。 相似文献
17.
端元提取技术是混合像元分解中重要的步骤之一,传统的端元提取方法仅考虑了像元的光谱信息.本文将数学形态学算子扩展到高光谱空间,并应用到端元提取技术中,可以顾及像元的上下文信息.利用AVIRIS高光谱仿真数据对算法进行了实验验证,结果表明本文算法具有较强的抗噪能力和较高的可靠性.在此基础上,结合徐州地区的EO-1 Hyperion高光谱遥感图像,使用本文算法进行了端元提取应用研究,将实验结果与纯净像元指数、顶点成分分析方法做了对比分析和精度评价,证明本文算法是一种可靠的高光谱遥感图像端元提取技术. 相似文献
18.
19.
本文为验证SVM对高维特征的适应性和可靠性,针对不同特征提取方法与特征组合,以国产OMISⅡ传感器获得的北京昌平地区高光谱遥感据为例,对SVM分类器中特征维数对分类准确率的影响进行了试验,通过对主成分分析、最小噪声分离算法、相关系数分组后特征提取、导数光谱等的分析,表明SVM分类器的分类精度随着特征维数波动,其中主成分分析降维后提取的特征具有用于分类能够获得最高的准确率。通过与最大似然法和光谱角制图分类算法的比较,说明在同样的特征输入情况下SVM分类算法分类的准确率高于最大似然法和光谱角制图分类器。 相似文献
20.
高分辨率遥感影像建筑物信息自动提取是遥感应用研究中的一个热点问题,但由于受到成像条件不同、背景地物复杂、建筑物类型多样等多个因素的影响使得建筑物的自动提取仍然十分困难。为此,在综合考虑影像光谱、几何与上下文特征的基础上,提出了一种基于面向对象与形态学相结合的高分辨率遥感影像建筑物信息分级提取方法。该方法首先利用影像的多尺度及多方向Gabor小波变换结果提取建筑物特征点;然后采用面向对象的思想构建空间投票矩阵来度量每一个像素点属于建筑物区域的概率,从而提取出建筑物区域边界;最后在提取的建筑物区域内应用形态学建筑物指数实现建筑物信息的自动提取。实验结果表明,本文方法能够高效、高精度地完成复杂场景下的建筑物信息提取,且提取结果的正确性和完整性都优于效果较好的PanTex算法。 相似文献