首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiative forcing and climate sensitivity have been widely used as concepts to understand climate change. This work performs climate change experiments with an intermediate general circulation model (IGCM) to examine the robustness of the radiative forcing concept for carbon dioxide and solar constant changes. This IGCM has been specifically developed as a computationally fast model, but one that allows an interaction between physical processes and large-scale dynamics; the model allows many long integrations to be performed relatively quickly. It employs a fast and accurate radiative transfer scheme, as well as simple convection and surface schemes, and a slab ocean, to model the effects of climate change mechanisms on the atmospheric temperatures and dynamics with a reasonable degree of complexity. The climatology of the IGCM run at T-21 resolution with 22 levels is compared to European Centre for Medium Range Weather Forecasting Reanalysis data. The response of the model to changes in carbon dioxide and solar output are examined when these changes are applied globally and when constrained geographically (e.g. over land only). The CO2 experiments have a roughly 17% higher climate sensitivity than the solar experiments. It is also found that a forcing at high latitudes causes a 40% higher climate sensitivity than a forcing only applied at low latitudes. It is found that, despite differences in the model feedbacks, climate sensitivity is roughly constant over a range of distributions of CO2 and solar forcings. Hence, in the IGCM at least, the radiative forcing concept is capable of predicting global surface temperature changes to within 30%, for the perturbations described here. It is concluded that radiative forcing remains a useful tool for assessing the natural and anthropogenic impact of climate change mechanisms on surface temperature.  相似文献   

2.
A version of the National Center for Atmospheric Research community climate model — a global, spectral (R15) general circulation model — is coupled to a coarse-grid (5° latitude-] longitude, four-layer) ocean general circulation model to study the response of the climate system to increases of atmospheric carbon dioxide (CO2). Three simulations are run: one with an instantaneous doubling of atmospheric CO2 (from 330 to 660 ppm), another with the CO2 concentration starting at 330 ppm and increasing linearly at a rate of 1% per year, and a third with CO2 held constant at 330 pm. Results at the end of 30 years of simulation indicate a globally averaged surface air temperature increase of 1.6° C for the instantaneous doubling case and 0.7°C for the transient forcing case. Inherent characteristics of the coarse-grid ocean model flow sea-surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes] produce lower sensitivity in this model after 30 years than in earlier simulations with the same atmosphere coupled to a 50-m, slab-ocean mixed layer. Within the limitations of the simulated meridional overturning, the thermohaline circulation weakens in the coupled model with doubled CO2 as the high-latitude ocean-surface layer warms and freshens and westerly wind stress is decreased. In the transient forcing case with slowly increasing CO2 (30% increase after 30 years), the zonal mean warming of the ocean is most evident in the surface layer near 30°–50° S. Geographical plots of surface air temperature change in the transient case show patterns of regional climate anomalies that differ from those in the instantaneous CO2 doubling case, particularly in the North Atlantic and northern European regions. This suggests that differences in CO2 forcing in the climate system are important in CO2 response in regard to time-dependent climate anomaly regimes. This confirms earlier studies with simple climate models that instantaneous CO2 doubling simulations may not be analogous in all respects to simulations with slowly increasing CO2.A portion of this study is supported by the US Department of Energy as part of its Carbon Dioxide Research Program  相似文献   

3.
Summary The response of the climatic system to changes in its radiative forcing has been the subject of much study. Climate models of various complexity have been used to demonstrate that a small increase in the solar constant, or doubling of the atmospheric CO2, would lead to a warmer surface. Very little scientific attention, however, has been given to the effect such a change in radiative balance might have on climatic variability. That is, would an earth warmed in this way be more temperate or more variable? To move one step closer to answering this question, we employed a simple one-dimensional surface energy balance climate model and forced it with random Gaussian white noise to simulate interannual variability. We integrated the model using 0, 2, and 4% increases in the solar constant. The results of these numerical experiments indicate that, under a warmer surface radiative balance, interannual variability of the surface temperature is reduced.  相似文献   

4.
Many studies have examined the physical changes expected in the environment as a result of anthropogenic forcing. These physical changes will have an effect on ecosystems as well. In this study, a nitrogen-phytoplankton-zooplankton (NPZ) model is used to examine the effects of changes in the physical environment on primary productivity in the North Pacific ocean. The physical variables considered are mixed layer temperature and depth, solar insolation, and large-scale upwelling. The changes in these fields by the 2090s are taken from a coupled ocean-atmosphere general circulation model forced by projected atmospheric CO2 and sulfates, then applied to the NPZ biological model. Theresult is a change in the seasonal cycle of phytoplankton and herbivore concentrations across the subpolar North Pacific, moving from a regime characterized by strong variability with low wintertime values and a spring bloom, to much more constant yearly values. A reduction of yearly-averaged primary productivity accompanies much of this shift to more constant year-round conditions. In other regions, productivity increases as warmer surface waters enable higher growth rates. Changes in mixed layer temperature and depth account for almost all the changes in productivity; model-predicted changes in surface insolation and large-scale upwelling have little impact.  相似文献   

5.
Recent studies have shown that changes in global mean precipitation are larger for solar forcing than for CO2 forcing of similar magnitude. In this paper, we use an atmospheric general circulation model to show that the differences originate from differing fast responses of the climate system. We estimate the adjusted radiative forcing and fast response using Hansen’s “fixed-SST forcing” method. Total climate system response is calculated using mixed layer simulations using the same model. Our analysis shows that the fast response is almost 40% of the total response for few key variables like precipitation and evaporation. We further demonstrate that the hydrologic sensitivity, defined as the change in global mean precipitation per unit warming, is the same for the two forcings when the fast responses are excluded from the definition of hydrologic sensitivity, suggesting that the slow response (feedback) of the hydrological cycle is independent of the forcing mechanism. Based on our results, we recommend that the fast and slow response be compared separately in multi-model intercomparisons to discover and understand robust responses in hydrologic cycle. The significance of this study to geoengineering is discussed.  相似文献   

6.
 A general circulation model is used to examine the effects of reduced atmospheric CO2, insolation changes and an updated reconstruction of the continental ice sheets at the Last Glacial Maximum (LGM). A set of experiments is performed to estimate the radiative forcing from each of the boundary conditions. These calculations are used to estimate a total radiative forcing for the climate of the LGM. The response of the general circulation model to the forcing from each of the changed boundary conditions is then investigated. About two-thirds of the simulated glacial cooling is due to the presence of the continental ice sheets. The effect of the cloud feedback is substantially modified where there are large changes to surface albedo. Finally, the climate sensitivity is estimated based on the global mean LGM radiative forcing and temperature response, and is compared to the climate sensitivity calculated from equilibrium experiments with atmospheric CO2 doubled from present day concentration. The calculations here using the model and palaeodata support a climate sensitivity of about 1 Wm-2 K-1 which is within the conventional range. Received: 8 February 1997 / Accepted: 4 June 1997  相似文献   

7.
Responses of ocean circulation and ocean carbon cycle in the course of a global glaciation from the present Earth conditions are investigated by using a coupled climate-biogeochemical model. We investigate steady states of the climate system under colder conditions induced by a reduction of solar constant from the present condition. A globally ice-covered solution is obtained under the solar constant of 92.2% of the present value. We found that because almost all of sea water reaches the frozen point, the ocean stratification is maintained not by temperature but by salinity just before the global glaciation (at the solar constant of 92.3%). It is demonstrated that the ocean circulation is driven not by the surface cooling but by the surface freshwater forcing associated with formation and melting of sea ice. As a result, the deep ocean is ventilated exclusively by deep water formation in southern high latitudes where sea ice production takes place much more massively than northern high latitudes. We also found that atmospheric CO2 concentration decreases through the ocean carbon cycle. This reduction is explained primarily by an increase of solubility of CO2 due to a decrease of sea surface temperature, whereas the export production weakens by 30% just before the global glaciation. In order to investigate the conditions for the atmospheric CO2 reduction to cause global glaciations, we also conduct a series of simulations in which the total amount of carbon in the atmosphere?Cocean system is reduced from the present condition. Under the present solar constant, the results show that the global glaciation takes place when the total carbon decreases to be 70% of the present-day value. Just before the glaciation, weathering rate becomes very small (almost 10% of the present value) and the organic carbon burial declines due to weakened biological productivity. Therefore, outgoing carbon flux from the atmosphere?Cocean system significantly decreases. This suggests the atmosphere?Cocean system has strong negative feedback loops against decline of the total carbon content. The results obtained here imply that some processes outside the atmosphere?Cocean feedback loops may be required to cause global glaciations.  相似文献   

8.
Simulations of impacts of a double-CO2 climate with the Changed Climate Fire Modeling System in Northern California consistently projected increases in area burned and in the frequency of escaped fires compared with simulations of the present climate. However, the magnitude of those increases was strongly influenced by vegetation type, choice of atmospheric general circulation model (GCM) scenario, and choice of climatic forcing variables. The greatest projected increase in fire severity occurred in grasslands, using the Princeton Geophysical Fluid Dynamics Laboratory GCM, with wind speed, temperature, humidity and precipitation as driving variables.  相似文献   

9.
The sensitivity of the last glacial-inception (around 115 kyr BP, 115,000 years before present) to different feedback mechanisms has been analysed by using the Earth system model of intermediate complexity CLIMBER-2. CLIMBER-2 includes dynamic modules of the atmosphere, ocean, terrestrial biosphere and inland ice, the last of which was added recently by utilising the three-dimensonal polythermal ice-sheet model SICOPOLIS. We performed a set of transient experiments starting at the middle of the Eemiam interglacial and ran the model for 26,000 years with time-dependent orbital forcing and observed changes in atmospheric CO2 concentration (CO2 forcing). The role of vegetation and ocean feedback, CO2 forcing, mineral dust, thermohaline circulation and orbital insolation were closely investigated. In our model, glacial inception, as a bifurcation in the climate system, appears in nearly all sensitivity runs including a run with constant atmospheric CO2 concentration of 280 ppmv, a typical interglacial value, and simulations with prescribed present-day sea-surface temperatures or vegetation cover—although the rate of the growth of ice-sheets growth is smaller than in the case of the fully interactive model. Only if we run the fully interactive model with constant present-day insolation and apply present-day CO2 forcing does no glacial inception appear at all. This implies that, within our model, the orbital forcing alone is sufficient to trigger the interglacial–glacial transition, while vegetation, ocean and atmospheric CO2 concentration only provide additional, although important, positive feedbacks. In addition, we found that possible reorganisations of the thermohaline circulation influence the distribution of inland ice.  相似文献   

10.
Abstract

A new earth system climate model of intermediate complexity has been developed and its climatology compared to observations. The UVic Earth System Climate Model consists of a three‐dimensional ocean general circulation model coupled to a thermodynamic/dynamic sea‐ice model, an energy‐moisture balance atmospheric model with dynamical feedbacks, and a thermomechanical land‐ice model. In order to keep the model computationally efficient a reduced complexity atmosphere model is used. Atmospheric heat and freshwater transports are parametrized through Fickian diffusion, and precipitation is assumed to occur when the relative humidity is greater than 85%. Moisture transport can also be accomplished through advection if desired. Precipitation over land is assumed to return instantaneously to the ocean via one of 33 observed river drainage basins. Ice and snow albedo feedbacks are included in the coupled model by locally increasing the prescribed latitudinal profile of the planetary albedo. The atmospheric model includes a parametrization of water vapour/planetary longwave feedbacks, although the radiative forcing associated with changes in atmospheric CO2 is prescribed as a modification of the planetary longwave radiative flux. A specified lapse rate is used to reduce the surface temperature over land where there is topography. The model uses prescribed present‐day winds in its climatology, although a dynamical wind feedback is included which exploits a latitudinally‐varying empirical relationship between atmospheric surface temperature and density. The ocean component of the coupled model is based on the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model 2.2, with a global resolution of 3.6° (zonal) by 1.8° (meridional) and 19 vertical levels, and includes an option for brine‐rejection parametrization. The sea‐ice component incorporates an elastic‐viscous‐plastic rheology to represent sea‐ice dynamics and various options for the representation of sea‐ice thermodynamics and thickness distribution. The systematic comparison of the coupled model with observations reveals good agreement, especially when moisture transport is accomplished through advection.

Global warming simulations conducted using the model to explore the role of moisture advection reveal a climate sensitivity of 3.0°C for a doubling of CO2, in line with other more comprehensive coupled models. Moisture advection, together with the wind feedback, leads to a transient simulation in which the meridional overturning in the North Atlantic initially weakens, but is eventually re‐established to its initial strength once the radiative forcing is held fixed, as found in many coupled atmosphere General Circulation Models (GCMs). This is in contrast to experiments in which moisture transport is accomplished through diffusion whereby the overturning is reestablished to a strength that is greater than its initial condition.

When applied to the climate of the Last Glacial Maximum (LGM), the model obtains tropical cooling (30°N‐30°S), relative to the present, of about 2.1°C over the ocean and 3.6°C over the land. These are generally cooler than CLIMAP estimates, but not as cool as some other reconstructions. This moderate cooling is consistent with alkenone reconstructions and a low to medium climate sensitivity to perturbations in radiative forcing. An amplification of the cooling occurs in the North Atlantic due to the weakening of North Atlantic Deep Water formation. Concurrent with this weakening is a shallowing of, and a more northward penetration of, Antarctic Bottom Water.

Climate models are usually evaluated by spinning them up under perpetual present‐day forcing and comparing the model results with present‐day observations. Implicit in this approach is the assumption that the present‐day observations are in equilibrium with the present‐day radiative forcing. The comparison of a long transient integration (starting at 6 KBP), forced by changing radiative forcing (solar, CO2, orbital), with an equilibrium integration reveals substantial differences. Relative to the climatology from the present‐day equilibrium integration, the global mean surface air and sea surface temperatures (SSTs) are 0.74°C and 0.55°C colder, respectively. Deep ocean temperatures are substantially cooler and southern hemisphere sea‐ice cover is 22% greater, although the North Atlantic conveyor remains remarkably stable in all cases. The differences are due to the long timescale memory of the deep ocean to climatic conditions which prevailed throughout the late Holocene. It is also demonstrated that a global warming simulation that starts from an equilibrium present‐day climate (cold start) underestimates the global temperature increase at 2100 by 13% when compared to a transient simulation, under historical solar, CO2 and orbital forcing, that is also extended out to 2100. This is larger (13% compared to 9.8%) than the difference from an analogous transient experiment which does not include historical changes in solar forcing. These results suggest that those groups that do not account for solar forcing changes over the twentieth century may slightly underestimate (~3% in our model) the projected warming by the year 2100.  相似文献   

11.
A Local Climate Model (LCM) is described that can provide a high-resolution (10 km) simulation of climate resulting from a doubling of atmospheric CO2 concentrations. A canonicalregression function is used to compute the monthly temperature (mean of daily-maximum-temperature) and precipitation for any point, given a set of predictor variables. Predictor variables represent the influence of terrain, sea-surface temperature (SST), windfields, CO2 concentration, and solar radiation on climate. The canonical-regression function is calibrated and validated using empirical windfield, SST, and climate data from stations in the western U.S. To illustrate an application of the LCM, the climate of northern and central California is simulated for a doubled CO2 (600 ppmv) and a control scenario (300 ppmv CO2). Windfields and SSTs used to compute predictor variables are taken from general circulation model simulations for these two scenarios. LCM solutions indicate that doubling CO2 will result in a 3 C° increase in January temperature, a 2 C° increase in July temperature, a 16 mm (37%) increase in January precipitation, and a 3 mm (46%) increase in July precipitation.  相似文献   

12.
Two experiments are performed with the NCAR Community Climate Model (CCM) coupled to a swamp ocean with annually averaged solar forcing. A swamp ocean model is one in which the ocean temperature is computed from a surface energy balance. Both experiments are run with present (1 × CO2) and doubled (2 × CO2) amounts of atmospheric carbon dioxide (CO2). The first tests the sensitivity of the model to a snow and sea-ice-albedo formulation which facilitates relatively greater ice melt. The second assesses the model response when the basic state of the model in the control run is colder due to a 2% decrease in solar constant. Both are compared to a previous experiment with the same model using a different snow and sea-ice-albedo formulation and the present value of the solar constant. It is found that the globally averaged surface air temperature increase due to a doubling of CO2 is highly dependent on (1) the type of snow-sea-ice-albedo formulation used such that the parameterization which better facilitates relatively greater ice melt exhibits a greater sensitivity to increased CO2, and (2) the basic state of the control run such that the colder the basic state, the greater the warming due to increased CO2.A portion of this study is supported by the U.S. Department of Energy as part of its Carbon Dioxide Research Program.The National Center for Atmospheric Research is sponsored by the National Science Foundation  相似文献   

13.
The response of the ocean’s meridional overturning circulation (MOC) to increased greenhouse gas forcing is examined using a coupled model of intermediate complexity, including a dynamic 3-D ocean subcomponent. Parameters are the increase in CO2 forcing (with stabilization after a specified time interval) and the model’s climate sensitivity. In this model, the cessation of deep sinking in the north “Atlantic” (hereinafter, a “collapse”), as indicated by changes in the MOC, behaves like a simple bifurcation. The final surface air temperature (SAT) change, which is closely predicted by the product of the radiative forcing and the climate sensitivity, determines whether a collapse occurs. The initial transient response in SAT is largely a function of the forcing increase, with higher sensitivity runs exhibiting delayed behavior; accordingly, high CO2-low sensitivity scenarios can be assessed as a recovering or collapsing circulation shortly after stabilization, whereas low CO2-high sensitivity scenarios require several hundred additional years to make such a determination. We also systemically examine how the rate of forcing, for a given CO2 stabilization, affects the ocean response. In contrast with previous studies based on results using simpler ocean models, we find that except for a narrow range of marginally stable to marginally unstable scenarios, the forcing rate has little impact on whether the run collapses or recovers. In this narrow range, however, forcing increases on a time scale of slow ocean advective processes results in weaker declines in overturning strength and can permit a run to recover that would otherwise collapse.  相似文献   

14.
In order to simulate the climatic conditions of the Neoproterozoic, we have conducted a series of simulations with a coupled ocean–atmosphere model of intermediate complexity, CLIMBER-2, using a reduced solar constant of 6% and varied CO2 concentrations. We have also tested the impact of the breakup of the supercontinent Rodinia that has been hypothesized to play an important role in the initiation of an ice-covered Earth. Our results show that for the critical values of 89 and 149 ppm of atmospheric CO2, a snowball Earth occurs in the supercontinent case and in the dislocated configuration, respectively. The study of the sensitivity of the meridional oceanic energy transport to reductions in CO2 concentration and to the dislocation of the supercontinent demonstrates that dynamics ocean processes can modulate the CO2 threshold value, below which a snowball solution is found, but cannot prevent it. The collapse of the overturning cells and of the oceanic heat transport is mainly due to the reduced zonal temperature gradient once the sea-ice line reaches the 30° latitudinal band but also to the freshening of the tropical ocean by sea-ice melt. In term of feedbacks, the meridional atmospheric heat transport via the Hadley circulation plays the major role, all along the CO2 decrease, by increasing the energy brought in the front of the sea-ice margin but does not appear enough efficient to prevent the onset of the sea-ice-albedo instability in the case of the continental configurations tested in this contribution.  相似文献   

15.
 Impulse-response-function (IRF) models are designed for applications requiring a large number of climate change simulations, such as multi-scenario climate impact studies or cost-benefit integrated-assessment studies. The models apply linear response theory to reproduce the characteristics of the climate response to external forcing computed with sophisticated state-of-the-art climate models like general circulation models of the physical ocean-atmosphere system and three-dimensional oceanic-plus-terrestrial carbon cycle models. Although highly computer efficient, IRF models are nonetheless capable of reproducing the full set of climate-change information generated by the complex models against which they are calibrated. While limited in principle to the linear response regime (less than about 3 C global-mean temperature change), the applicability of the IRF model presented has been extended into the nonlinear domain through explicit treatment of the climate system's dominant nonlinearities: CO2 chemistry in ocean water, CO2 fertilization of land biota, and sublinear radiative forcing. The resultant nonlinear impulse-response model of the coupled carbon cycle-climate system (NICCS) computes the temporal evolution of spatial patterns of climate change for four climate variables of particular relevance for climate impact studies: near-surface temperature, cloud cover, precipitation, and sea level. The space-time response characteristics of the model are derived from an EOF analysis of a transient 850-year greenhouse warming simulation with the Hamburg atmosphere-ocean general circulation model ECHAM3-LSG and a similar response experiment with the Hamburg carbon cycle model HAMOCC. The model is applied to two long-term CO2 emission scenarios, demonstrating that the use of all currently estimated fossil fuel resources would carry the Earth's climate far beyond the range of climate change for which reliable quantitative predictions are possible today, and that even a freezing of emissions to present-day levels would cause a major global warming in the long term. Received: 28 January 2000 / Accepted: 9 March 2001  相似文献   

16.
A coupled carbon cycle-climate model is used to compute global atmospheric CO2 and temperature variation that would result from several future CO2 emission scenarios. The model includes temperature and CO2 feedbacks on the terrestrial biosphere, and temperature feedback on the oceanic uptake of CO2. The scenarios used include cases in which fossil fuel CO2 emissions are held constant at the 1986 value or increase by 1% yr–1 until either 2000 or 2020, followed by a gradual transition to a rate of decrease of 1 or 2% yr–1. The climatic effect of increases in non-CO2 trace gases is included, and scenarios are considered in which these gases increase until 2075 or are stabilized once CO2 emission reductions begin. Low and high deforestation scenarios are also considered. In all cases, results are computed for equilibrium climatic sensitivities to CO2 doubling of 2.0 and 4.0 °C.Peak atmospheric CO2 concentrations of 400–500 ppmv and global mean warming after 1980 of 0.6–3.2 °C occur, with maximum rates of global mean warming of 0.2–0.3 °C decade–1. The peak CO2 concentrations in these scenarios are significantly below that commonly regarded as unavoidable; further sensitivity analyses suggest that limiting atmospheric CO2 to as little as 400 ppmv is a credible option.Two factors in the model are important in limiting atmospheric CO2: (1) the airborne fraction falls rapidly once emissions begin to decrease, so that total emissions (fossil fuel + land use-induced) need initially fall to only about half their present value in order to stabilize atmospheric CO2, and (2) changes in rates of deforestation have an immediate and proportional effect on gross emissions from the biosphere, whereas the CO2 sink due to regrowth of forests responds more slowly, so that decreases in the rate of deforestation have a disproportionately large effect on net emission.If fossil fuel emissions were to decrease at 1–2% yr–1 beginning early in the next century, emissions could decrease to the rate of CO2 uptake by the predominantly oceanic sink within 50–100 yrs. Simulation results suggest that if subsequent emission reductions were tied to the rate of CO2 uptake by natural CO2 sinks, these reductions could proceed more slowly than initially while preventing further CO2 increases, since the natural CO2 sink strength decreases on time scales of one to several centuries. The model used here does not account for the possible effect on atmospheric CO2 concentration of possible changes in oceanic circulation. Based on past rates of atmospheric CO2 variation determined from polar ice cores, it appears that the largest plausible perturbation in ocean-air CO2 flux due to changes of oceanic circulation is substantially smaller than the permitted fossil fuel CO2 emissions under the above strategy, so tieing fossil fuel emissions to the total sink strength could provide adequate flexibility for responding to unexpected changes in oceanic CO2 uptake caused by climatic warming-induced changes of oceanic circulation.  相似文献   

17.
The Dalton Minimum (1790–1830) was a period with reduced solar irradiance and strong volcanic eruptions. Additionally, the atmospheric CO2 concentrations started to rise from the background level of previous centuries. In this period most empirical climate reconstructions indicate a minimum in global or hemispheric temperatures. Here, we analyse several simulations starting in 1755 with the coupled atmosphere-ocean model ECHO-G driven by different forcing combinations to investigate which external forcing could have contributed most strongly to the reduced temperatures during the Dalton Minimum. Results indicate that on global and hemispheric scales, the volcanic forcing is largely responsible for the temperature drop in this period, especially during its second half, whereas changes in solar forcing and the increasing atmospheric CO2 concentrations were of minor importance. At regional scales, especially the extratropical, the impact of volcanic forcing is much less discernible due to the large regional variability, a finding that agrees with empirical temperature reconstructions.  相似文献   

18.
Atmospheric CO2 removal is currently receiving serious consideration as a supplement or even alternative to emissions reduction. However the possible consequences of such a strategy for the climate system, and particularly for regional changes to the hydrological cycle, are not well understood. Two idealised general circulation model experiments are described, where CO2 concentrations are steadily increased, then decreased along the same path. Global mean precipitation continues to increase for several decades after CO2 begins to decrease. The mean tropical circulation shows associated changes due to the constraint on the global circulation imposed by precipitation and water vapour. The patterns of precipitation and circulation change also exhibit asymmetries with regard to changes in both CO2 and global mean temperature, but while the lag in global precipitation can be ascribed to different levels of CO2 at the same temperature state, the regional changes cannot. Instead, ocean memory and heat transfer are important here. In particular the equatorial East Pacific continues to warm relative to the West Pacific during CO2 ramp-down, producing an anomalously large equatorial Pacific sea surface temperature gradient and associated rainfall anomalies. The mechanism is likely to be a lag in response to atmospheric forcing between mixed-layer water in the east Pacific and the sub-thermocline water below, due to transport through the ocean circulation. The implication of this study is that a CO2 pathway of increasing then decreasing atmospheric CO2 concentrations may lead us to climate states during CO2 decrease that have not been experienced during the increase.  相似文献   

19.
Based on univariate correlation and coherence analyses and considering the physical basis of the relationships, a simple multiforced (multiple) statistical concept is used which correlates observational climatic time series simultaneously with volcanic, solar, ENSO, and the anthropogenic greenhouse gases forcing. This is appropriate to remove some natural climate noise in the observed data and to evaluate the components (signals) possibly due to the anthropogenic greenhouse gas forcing (CO2, or equivalent CO2 implying additional gases) during industrial time. In this paper, we apply this technique to 100 global box data time series 1890–1985, of the surface air temperature, using observed data from Hansen and Lebedeff. The results are presented in terms of latitudinal-seasonal and regional trends, where the observed trend patterns are compared with the hypothetical signals (statistical assessments) possibly due to anthropogenic greenhouse forcing. These latter signals can be amplified to enable a comparison with corresponding results from general circulation model (GCM) CO2 doubling experiments. These observed-statistical assessments lead to results which are, at least qualitatively and in respect to the zonal mean temperatures, very similar to some GCM experiments indicating the maximum CO2 doubling signals (statistical assessment > 12 K) in the arctic winter. However, these signals are moderate in the tropics and in the Southern Hemisphere (global average 2.8–4.4 K). As far as the industrial signals are concerned (observed period) these signals are somewhat larger (maximum 7 K, global average 0.5–0.9 K) than the observed trends (maximum 5 K, global average 0.5 K). Phase shifts of cause and effect may amplify these signals but are very uncertain.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   

20.
Using the lAP two-level general circulation model,the ice age July climate was simulated through the surface conditions of 18 000 years before present assembled by the CLIMAP Project.Comparing with the present July simulation results,the ice age atmosphere is found to have a substantially lower temperature,precipitation,and cloudiness,higher sea-level pressure,especially in the high latitude land region of the Northern Hemisphere and Antarctica.When the CO2 content is set as the modern value the climatic response is very small,which shows that the problems of CO2 sensitivity should be studied by means of coupled models.It is also pointed out that there are some common characteristics between CO2-induced climatic changes and the ice age surface condition-induced climatic changes,which may give us some insight into how climate responds to external forcings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号