共查询到20条相似文献,搜索用时 15 毫秒
1.
The tropical Indian Ocean (TIO) is warmer than normal during the summer when or after the El Nio decays. The present study investigates the impact of TIO SST on the South Asian High (SAH) in summer. When the TIO is warmer, the SAH strengthens and its center shifts southward. It is found that the variations in the SAH cannot be accounted for by the precipitation anomaly. A possible mechanism is proposed to explain the connection between the TIO and SAH: warmer SST in the TIO changes the equivalent potential temperature (EPT) in the atmospheric boundary layer (ABL), alters the temperature profile of the moist atmosphere, warms the troposphere, which produces significant positive height anomaly over South Asia and modifies the SAH. An atmospheric general circulation model, ECHAM5, which has a reasonable prediction skill in the TIO and South Asia, was selected to test the effects of TIO SST on the SAH. The experiment with idealized heating over the TIO reproduced the response of the SAH to TIO warming. The results suggest that the TIO-induced EPT change in the ABL can account for the variations in the SAH. 相似文献
2.
3.
基于IPCC AR4耦合模式的南极涛动和北极涛动的模拟及未来变化预估 总被引:6,自引:2,他引:6
评估了参加政府间气候变化委员会第4次评估报告(IPCC AR4)的耦合模式对南极涛动和北极涛动的模拟能力。分析了24个模式对1970—1999年南极涛动和北极涛动的模拟效能,并与两套再分析资料ERA-40和NCEP-1进行了对比分析。结果表明,模式的模拟能力具有一定的季节依赖性,冬季模拟能力最好。大多数模式对南极涛动空间结构和时间序列趋势的模拟好于北极涛动。根据Taylor图选出具有较好模拟能力的模式并做集合分析,发现经过选取的模式集合可以明显改善模式的模拟能力。分析SRES A1B情景下的南极涛动和北极涛动的模拟、预估结果表明:1970—2099年,南极涛动和北极涛动指数均呈持续上升趋势,北极涛动指数增长略显平稳。相对于1970—1999年、2060—2089年两半球的海平面气压场均呈现极区气压降低、中纬度气压升高的形态,同样表明南、北极涛动在后一时段更强。因此,在气候变暖背景下,南、北极涛动将持续增强,21世纪中期的臭氧恢复可能不会显著影响这种趋势。 相似文献
4.
S. D. Bansod 《Theoretical and Applied Climatology》2004,77(3-4):185-193
Summary In this paper, the interannual variability of satellite derived outgoing longwave radiation (OLR) is examined in relation to the Indian summer monsoon rainfall (June to September total rainfall; ISMR). Monthly grid point OLR field over the domain i.e. the tropical Pacific and Atlantic region (30°N to 30°S, 110°E to 10°W) and the ISMR for the period 1974–2001 are used for the study. A strong and significant north–south dipole structure in the correlation pattern is found between the ISMR and the OLR field over the domain during January. This dipole is located over the west Pacific region with highly significant negative (positive) correlations over the South China Sea and surrounding region (around north-east Australia). The dipole weakens and moves northwestward during February and disappears in March. During the month of May, the OLR over the central Atlantic Ocean shows a significant positive relationship with the ISMR. These relationships are found to be consistent and robust during the period of analysis and can be used in the prediction of the ISMR.A multiple regression equation is developed, using the above results, for prediction of the ISMR and the empirical relationships are verified using an independent data set. The results are encouraging for the prediction of the ISMR. The composite annual cycle of the OLR, over the west Pacific regions during extreme ISMR is found to be useful in the prediction of extreme summer monsoon rainfall conditions over the Indian subcontinent. 相似文献
5.
This paper evaluates the performance of eight state-of-art IPCC-AR4 coupled atmosphere-ocean general circulation models in their representation of regional characteristics of atmospheric water balance over South Asia. The results presented here are the regional climate change scenarios of atmospheric water balance components, precipitation, moisture convergence and evaporation (P, C and E) up to the end of the twenty-second century based on IPCC AR4 modelling experiments conducted for (A1B) future greenhouse gas emission scenario. The AOGCMs, despite their relatively coarse resolution, have shown a reasonable skill in depicting the hydrological cycle over the South Asian region. However, considerable biases do exist with reference to the observed atmospheric water balance and also inter-model differences. The monsoon rainfall and atmospheric water balance changes under A1B scenario are discussed in detail. Spatial patterns of rainfall change projections indicate maximum increase over northwest India in most of the models, but changes in the atmospheric water balance are generally widespread over South Asia. While the scenarios presented in this study are indicative of the expected range of rainfall and water balance changes, it must be noted that the quantitative estimates still have large uncertainties associated with them. 相似文献
6.
Tropical cyclone (TC) activities in the North Indian Ocean (NIO) peak in May during the pre-monsoon period, but the TC frequency shows obvious inter-annual variations. By conducting statistical analysis and dynamic diagnosis of long-term data from 1948 to 2016, the relationship between the inter-annual variations of Indian Ocean SST and NIO TC genesis frequency in May is analyzed in this paper. Furthermore, the potential mechanism concerning the effect of SST anomaly on TC frequency is also investigated. The findings are as follows: 1) there is a broadly consistent negative correlation between NIO TC frequency in May and SST in the Indian Ocean from March to May, with the key influencing area located in the southwestern Indian Ocean (SWIO); 2) the anomalies of SST in SWIO (SWIO-SST) are closely related to a teleconnection pattern surrounding the Indian Ocean, which can significantly modulate the high-level divergence, mid-level vertical motion and other related environmental factors and ultimately influence the formation of TCs over the NIO; 3) the increasing trend of SWIO-SST may play an essential role in the downward trend of NIO TC frequency over the past 69 years. 相似文献
7.
The veracity of modeled air–sea interactions in the Indian Ocean during the South Asian summer monsoon is examined. Representative simulations of the twentieth century climate, produced by coupled general circulation models as part of the Intergovernmental Panel on Climate Change Fourth Assessment Report, are the analysis targets along with observational data. The analysis shows the presence of large systematic biases in coupled simulations of boreal summer precipitation, evaporation, and sea surface temperature (SST) in the Indian Ocean, often exceeding 50% of the climatological values. Many of the biases are pervasive, being common to most simulations. The representation of air–sea interactions is also compromised. Coupled models tend to emphasize local forcing in the Indian Ocean as reflected by their large precipitation–SST correlations, at odds with the weak links in observations which suggest the importance of non-local controls. The evaporation–SST correlations are also differently represented, indicating atmospheric control on SST in some models and SST control on evaporation in others. The Indian monsoon rainfall–SST links are also misrepresented: the former is essentially uncorrelated with antecedent and contemporaneous Indian Ocean SSTs in nature, but not so in most of the simulations. Overall, coupled models are found deficient in portraying local and non-local air–sea interactions in the Indian Ocean during boreal summer. In our opinion, current models cannot provide durable insights on regional climate feedbacks nor credible projections of regional hydroclimate variability and change, should these involve ocean–atmosphere interactions in the Indian basin. 相似文献
8.
利用GFDL CM2p1模式, 本文探讨了初始海温误差对印度洋偶极子(IOD)事件可预报性的影响. 当热带印度洋存在初始海温误差时, IOD预报发生了冬季预报障碍(WPB)现象和夏季预报障碍(SPB)现象. WPB发生与否与正IOD事件发展位相冬季的厄尔尼诺-南方涛动(ENSO)有关. 即当冬季存在ENSO时, IOD预测不发生WPB现象, 反之亦然. 相比之下, SPB发生与否和ENSO没有必然联系. 此外, 进一步探讨了最容易导致SPB现象的初始海温误差的主要模态, 指出该模态在热带印度洋上表现为东-西偶极子型, 这和前人研究中最容易导致WPB现象的初始海温误差模态相似. 当在热带印度洋上叠加这些初始海温误差后, 热带太平洋上出现了海表温度异常和风场异常, 进而通过大气桥和印尼贯穿流的作用影响热带印度洋, 使之在夏季出现了东-西偶极子型的海表温度异常, 该异常在Bjerknes作用下快速发展, 加强, 最终导致SPB现象的发生. 相似文献
9.
The variability of sea surface Total Alkalinity (TA) and sea surface Total Inorganic Carbon (CT) is examined using all available data in the western tropical Atlantic (WTA: 20°S-20°N, 60°W-20°W). Lowest TA and CT are observed for the region located between 0°N-15°N/60°W-50°W and are explained by the influence of the Amazon plume during boreal summer. In the southern part of the area, 20°S-10°S/40°W-60°W, the highest values of TA and CT are linked to the CO2–rich waters due to the equatorial upwelling, which are transported by the South Equatorial Current (SEC) flowing from the African coast to the Brazilian shore. An increase of CT of 0.9 ± 0.3 μmol kg−1yr−1 has been observed in the SEC region and is consistent with previous published estimates. A revised CT-Sea Surface Salinity (SSS) relationship is proposed for the WTA to take into account the variability of CT at low salinities. This new CT-SSS relationship together with a published TA-SSS relationship allow to calculate pCO2 values that compare well with observed pCO2 (R2 = 0.90). 相似文献
10.
Satellite observations reveal a much stronger intraseasonal sea surface temperature (SST) variability in the southern Indian Ocean along 5-10oS in boreal winter than in boreal summer. The cause of this seasonal dependence is studied using a 2?-layer ocean model forced by ERA-40 reanalysis products during 1987-2001. The simulated winter-summer asymmetry of the SST variability is consistent with the observed. A mixed-layer heat budget is analyzed. Mean surface westerlies along the ITCZ (5-10oS) in December-January-February (DJF) leads to an increased (decreased) evaporation in the westerly (easterly) phase of the intraseasonal oscillation (ISO), during which convection is also enhanced (suppressed). Thus the anomalous shortwave radiation, latent heat flux and entrainment effects are all in phase and produce strong SST signals. During June-July-August (JJA), mean easterlies prevail south of the equator. Anomalies of the shortwave radiation tend to be out of phase to those of the latent heat flux and ocean entrainment. This mutual cancellation leads to a weak SST response in boreal summer. The resultant SST tendency is further diminished by a deeper mixed layer in JJA compared to that in DJF. The strong intraseasonal SST response in boreal winter may exert a delayed feedback to the subsequent opposite phase of ISO, implying a two-way air-sea interaction scenario on the intraseasonal timescale.
Citation: Li, T., F. Tam, X. Fu, et al., 2008: Causes of the intraseasonal SST variability in the tropical Indian ocean, Atmos. Oceanic Sci. Lett., 1, 18-23 相似文献
11.
热带印度洋春季海表温度异常与南海夏季风强度变化的关系 总被引:2,自引:0,他引:2
利用50年的Reynolds月平均海表温度资料和NCEP/NCAR全球大气再分析资料,分析了热带印度洋春季海温异常对南海夏季风强度变化的影响。结果表明:1)热带印度洋春季海表温度距平(SSTA)的模态主要是全区一致型(USBM)和热带南印度洋偶极型(SIODM),USBM模态既有年际时间尺度的变化特征,又有年际以上时间尺度的变化特征,既包含有对冬季ENSO信号响应的变化特征,又有独立于ENSO的变化特征;SIODM模态主要表现为独立于ENSO的年际时间尺度变化。2)USBM模态与南海夏季风强度变化呈显著负相关关系,且二者都是对冬季ENSO信号的响应,USBM模态的年际变化不能独立于ENSO信号影响南海夏季风的强度变化。3)经(1~8年)带通滤波及去除ENSO信号的热带印度洋春季SSTA的SIODM型分布是影响南海夏季风强度变化的主要模态,表现为热带东南印度洋为负(正)、其他海区为正(负)时,南海夏季风强度增强(减弱),大气环流对热带东南印度洋SSTA热力作用的响应是造成这一关系的直接原因,SIODM型的SSTA分布与南海夏季风年际异常关系在热带印度洋长期变化趋势的暖位相期显著,在长期变化趋势的冷位相期不显著。 相似文献
12.
The low-frequency atmosphere-ocean coupled variability of the southern Indian Ocean(SIO) was investigated using observation data over 1958-2010.These data were obtained from ECMWF for sea level pressure(SLP) and wind,from NCEP/NCAR for heat fluxes,and from the Hadley Center for SST.To obtain the coupled air-sea variability,we performed SVD analyses on SST and SLP.The primary coupled mode represents 43% of the total square covariance and is featured by weak westerly winds along 45-30 S.This weakened subtropical anticyclone forces fluctuations in a well-known subtropical dipole structure in the SST via wind-induced processes.The SST changes in response to atmosphere forcing and is predictable with a lead-time of 1-2 months.Atmosphere-ocean coupling of this mode is strongest during the austral summer.Its principle component is characterized by mixed interannual and interdecadal fluctuations.There is a strong relationship between the first mode and Antarctic Oscillation(AAO).The AAO can influence the coupled processes in the SIO by modulating the subtropical high.The second mode,accounting for 30% of the total square covariance,represents a 25-year period interdecadal oscillation in the strength of the subtropical anticyclone that is accompanied by fluctuations of a monopole structure in the SST along the 35-25 S band.It is caused by subsidence of the atmosphere.The present study also shows that physical processes of both local thermodynamic and ocean circulation in the SIO have a crucial role in the formation of the atmosphere-ocean covariability. 相似文献
13.
The ENSO Events in the Tropical Pacific and Dipole Events in the Indian Ocean 总被引:1,自引:0,他引:1 下载免费PDF全文
A depth map (close to that of the thermocline as defined by 20℃) of climatically maximum seatemperature anomaly was created at the subsurface of the tropical Pacific and Indian Ocean, based on which the evolving sea-temperature anomaly at this depth map from 1960 to 2000 was statistically analyzed. It is noted that the evolving sea temperature anomaly at this depth map can be better analyzed than the evolving sea surface one. For example, during the ENSO event in the tropical Pacific, the seatemperature anomaly signals travel counter-clockwise within the range of 10°S-10°N, and while moving, the signals change in intensity or even type. If Dipole is used in the tropical Indian Ocean for analyzing the depth map of maximum sea-temperature anomaly, the sea-temperature anomalies of the eastern and western Indian Oceans would be negatively correlated in statistical sense (Dipole in real physical sense), which is unlike the sea surface temperature anomaly based analysis which demonstrates that the inter-annual positive and negative changes only occur on the gradients of the western and eastern temperature anomalies. Further analysis shows that the development of ENSO and Dipole has a time lag features statistically, with the sea-temperature anomaly in the eastern equatorial Pacific changing earlier (by three months or so). And the linkage between these two changes is a pair of coupled evolving Walker circulations that move reversely in the equatorial Pacific and Indian Oceans. 相似文献
14.
利用全球海表海温资料(GISST)和NCEP/NCAR再分析风场、海平面气压场资料,研究了热带东印度洋海表温度持续性的季节差异,发现东印度洋海温持续性存在“秋季障碍”现象.进一步分析了东印度洋“秋季障碍”后冬季海温与中东太平洋海温、海平面气压及850hPa风场的关系,并讨论了热带印度洋一太平洋地区海气系统的季节变化与东印度洋“秋季障碍”的关系,结果表明,秋季热带印度洋一太平洋地区海气系统由以印度洋季风环流为主导转向以太平洋海气系统为主导,太平洋海气系统处于急剧加强期,增强的太平洋海气系统对东印度洋海温持续性“秋季障碍”起着重要的作用. 相似文献
15.
利用全球海表海温资料(GISST)和NCEP/NCAR再分析风场、海平面气压场资料,研究了热带东印度洋海表温度持续性的季节差异,发现东印度洋海温持续性存在"秋季障碍"现象。进一步分析了东印度洋"秋季障碍"后冬季海温与中东太平洋海温、海平面气压及850hPa风场的关系,并讨论了热带印度洋—太平洋地区海气系统的季节变化与东印度洋"秋季障碍"的关系,结果表明,秋季热带印度洋—太平洋地区海气系统由以印度洋季风环流为主导转向以太平洋海气系统为主导,太平洋海气系统处于急剧加强期,增强的太平洋海气系统对东印度洋海温持续性"秋季障碍"起着重要的作用。 相似文献
16.
M. G. Keerthi M. Lengaigne J. Vialard C. de Boyer Montégut P. M. Muraleedharan 《Climate Dynamics》2013,40(3-4):743-759
In the present study, interannual fluctuations of the mixed layer depth (MLD) in the tropical Indian Ocean are investigated from a long-term (1960–2007) eddy permitting numerical simulation and a new observational dataset built from hydrographic in situ data including Argo data (1969–2008). Both datasets show similar interannual variability patterns in relation with known climate modes and reasonable phase agreement in key regions. Due to the scarcity of the observational dataset, we then largely rely on the model to describe the interannual MLD variations in more detail. MLD interannual variability is two to four times smaller than the seasonal cycle. A large fraction of MLD interannual variations is linked to large-scale climate modes, with the exception of coastal and subtropical regions where interannual signature of small-scale structures dominates. The Indian Ocean Dipole is responsible for most variations in the 10°N–10°S band, with positive phases being associated with a shallow MLD in the equatorial and south-eastern Indian Ocean and a deepening in the south-central Indian Ocean. The El Niño signature is rather weak, with moderate MLD shoaling in autumn in the eastern Arabian Sea. Stronger than usual monsoon jets are only associated with a very modest MLD deepening in the southern Arabian Sea in summer. Finally, positive Indian Ocean Subtropical Dipoles are associated with a MLD deepening between 15 and 30°S. Buoyancy fluxes generally appear to dominate MLD interannual variations except for IOD-induced signals in the south-central Indian Ocean in autumn, where wind stirring and Ekman pumping dominate. 相似文献
17.
Low-Frequency Vortex Pair over the Tropical Eastern Indian Ocean and the South China Sea Summer Monsoon Onset 下载免费PDF全文
In this paper,the relationship between a pair of low-frequency vortexes over the equatorial Indian Ocean and the South China Sea(SCS) summer monsoon onset is studied based on a multi-year(1980-2003) analysis.A pair of vortexes symmetric about the equator is an important feature prior to the SCS summer monsoon onset.A composite analysis shows that the life cycle of the pair of vortexes is closely associated with the SCS summer monsoon onset.The westerly between the twin cyclones is an important factor to the SCS summer monsoon onset process. 相似文献
18.
19.
热带印度洋上层洋流的动力统计诊断 总被引:2,自引:1,他引:2
作者对热带印度洋上层洋流作了空间的三维经验正交函数(EOF)分析,揭示其与印度洋偶极子和ENSO循环的关系.结果表明:热带印度洋上层流场偏差的前3个三维模态都具有赤道俘获波的性质,第一、二、三模态均具有2~4年的准周期,第一、三模态分别对应于第一、二类印度洋偶极子模态,第二模态则是ENSO在印度洋的延伸模态.由三维EOF各模态可直接计算各模态的垂直速度场.印度洋海温的年际变化主要取决于印度洋地区的海气耦合状态,然而ENSO循环也有很大影响,其影响也许是通过沃克环流的啮合作用来实现的. 相似文献
20.
热带印度洋海温异常不同模态对南海夏季风爆发的可能影响 总被引:7,自引:6,他引:7
热带印度洋海温异常两种主要的模态分别是春季最强的全区一致型海温变化和秋季发展成熟的东西反位相偶极型模态, 本文主要分析了这两种海温模态对当年南海夏季风爆发的不同影响机制。对热带印度洋全区一致增暖和变冷年份的合成分析表明: 热带印度洋的增暖 (变冷) 通过海气相互作用激发印度洋-西太平洋异常的Walker环流圈, 加强 (减弱) 西太平洋副热带高压的强度, 进而有利于南海夏季风爆发的推迟 (提早)。由于热带印度洋全区一致型海温变化滞后响应于前冬ENSO事件, 因此, 作者提出热带印度洋的这种海温模态对维持ENSO对第二年南海夏季风爆发的影响起到了重要的传递作用。作者进一步通过1994年个例研究了热带印度洋偶极型海温模态对南海夏季风爆发的可能影响。1994年的热带印度洋偶极子在初夏就表现出很强的强度, 显著削弱了印度洋的夏季风环流, 尤其是索马里急流和赤道印度洋西风气流的强度。南海上游季风气流的减弱以及热带印度洋异常反气旋的发展阻碍了印度洋西南季风向南海的推进, 从而使得这一年南海夏季风爆发偏晚大约2候。 相似文献