首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The “Scenario Machine” (a computer code designed for studies of the evolution of close binaries) was used to carry out a population synthesis for a wide range of merging astrophysical objects: main-sequence stars with main-sequence stars; white dwarfs with white dwarfs, neutron stars, and black holes; neutron stars with neutron stars and black holes; and black holes with black holes. We calculate the rates of such events, and plot the mass distributions for merging white dwarfs and main-sequence stars. It is shown that Type Ia supernovae can be used as standard candles only after approximately one billion years of evolution of galaxies. In the course of this evolution, the average energy of Type Ia supernovae should decrease by roughly 10%; the maximum and minimum energies of Type Ia supernovae may differ by no less than by a factor of 1.5. This circumstance must be taken into account at estimating the parameters of the Universe expansion acceleration. According to theoretical estimates, the most massive—as a rule, magnetic—white dwarfs probably originate from mergers of white dwarfs of lower mass. At least some magnetic Ap and Bp stars may form in mergers of low-mass main-sequence stars (M ? 1.5 M ) with convective envelopes.  相似文献   

2.
We consider the evolution of close binaries resulting in the most intensive explosive phenomena in the stellar Universe—Type Ia supernovae and gamma-ray bursts. For Type Ia supernovae, which represent thermonuclear explosions of carbon-oxygen dwarfs whose masses reach the Chandrasekhar limit during the accretion of matter from the donor star, we derive the conditions for the accumulation of the limiting mass by the degenerate dwarf in the close binary. Accretion onto the degenerate dwarf can be accompanied by supersoft X-ray radiation with luminosity 1–104 L . Gamma-ray bursts are believe to accompany the formation and rapid evolution of compact accretion-decretion disks during the formation of relativistic objects—black holes and neutron stars. The rapid (~1 M /s) accretion of matter from these disks onto the central compact relativistic star results in an energy release of ~0.1 M c 2 ~ 1053 erg in the form of gamma-rays and neutrinos over a time of 0.1–1000 s. Such disks can form via the collapse of the rapidly rotating cores of Type Ib, Ic supernovae, which are components in extremely close binaries, or alternately due to the collapse of accreting oxygen-neon degenerate dwarfs with the Chandrasekhar mass into neutron stars, or the merging of neutron stars with neutron stars or black holes in close binaries. We present numerical models of the evolution of some close binaries that result in Type Ia supernovae, and also estimate the rates of these supernovae (~0.003/year) and of gamma-ray bursts (~10?4/year) in our Galaxy for various evolutionary scenarios. The collimation of the gamma-ray burst radiation within an opening angle of several degrees “matches” the latter estimate with the observed rate of these events, ~10?7–10?8/year calculated for a galaxy with the mass of our Galaxy.  相似文献   

3.
4.
The ejection of stars from spheroidal and disk dwarf galaxies resulting from the decay of OB associations is studied. This has substantial observational consequences for disk galaxies with escape velocities up to 20 km/s, or dynamical masses up to 108 M . The ejection of stars can (i) reduce the abundances of the products of Type Ia supernovae and, to a lesser degree, Type II supernovae, in disk stars, (ii) chemically enrich the galactic halo and intergalactic medium, (iii) lead to the loss of 50% of the stellar mass in galaxies with masses ∼107 M and the loss of all stars in systems with masses ≲105 M , (iv) increase the mass-to-luminosity ratio of the galaxy.  相似文献   

5.
The impact of variations in the fraction of binary stars producing type Ia supernovae, β, on the chemical evolution of spiral galaxies is analyzed numerically. Even modest variations in β appreciably affect the evolution of the relative abundances of iron-group and alpha-process elements. If a substantial number of the damped Lα systems manifest in the spectra of quasars are due to spiral galaxies, the large scatter of the abundances of various elements displayed by these systems can be accounted for by variations in β.  相似文献   

6.
We present the results of photometric observations of the type Ia supernovae SN 1995al, 1996bo, 1996bk, the type Ib/c supernova SN 1997X, and the type II supernova SN 1996an. The photometric characteristics of SN 1995al are close to the average for type Ia supernovae. Our analysis has revealed possible peculiarities in the light-curve shape and deviations from the average photometric parameters for SN 1996bk and 1996bo. Sn 1996an probably belongs to type IIP. The light curve of SN 1997X resembles that of the type Ic supernova SN 1994I. Light-curve parameters and absolute magnitude estimates are presented.  相似文献   

7.
The possible influence of galactic interaction on the formation and growth of supermassive black holes in their nuclei and the dynamics of their circumnuclear regions are considered, based on new data from the updated Vorontsov-Velyaminov catalog of interacting galaxies and modern estimates of the masses of supermassive black holes. A sample of interacting galaxies with known black-hole masses is created, and the dependence of the masses of the central black holes on the absolute B magnitudes and central stellar velocity dispersions in the host galaxy derived for this sample. A statistical analysis of the sample shows that the black-hole masses in interacting galaxies satisfy the same mass-velocity dispersion relation as non-interacting galaxies. A higher mass dispersion is characteristic of merging pairs than for galaxies that interact in other ways. The maximum masses of the central black holes are observed in radio galaxies.  相似文献   

8.
The impact of uncertainties in the relative efficiency of nucleosynthesis of various elements in stars on models of the chemical evolution of disk galaxies is studied using a single-zone model for the galactic evolution. The dependences of the abundances of 12C, 14N, 16O, and 56Fe on nucleosynthesis models are compared. The influence of the uncertainty in iron production by Type Ia supernovae on its abundance in a galaxy is also considered. It is concluded that differences in nucleosynthesis models can appreciably affect the results of modeling the early stages of galactic evolution, but this influence becomes insignificant at ages t> 109 yr. Uncertainties in the amount of iron ejected by Type Ia supernovae do not significantly influence the total galactic abundance of iron.  相似文献   

9.
The standard equations of general relativity admit extension so that they can be supplemented, not only with Einsteinian cosmological repulsive forces described by the Λ term, but also with other forces. Accordingly, we suggest a model of a uniformly expanding Universe (an S model). In this model, the cosmological forces of attraction and repulsion precisely balance each other. This S model is a good approximation for describing the Universe’s evolution over a wide range of redshifts (up to z ∼ 1000). The S model can explain in a simple way observational data on the age of the Universe, the apparent magnitude-redshift relation for Type Ia supernovae, and the angular separation between the centers of neighboring bright spots against the uniform background of the cosmic microwave background radiation.  相似文献   

10.
11.
A model for the evolution of disk galaxies is used to investigate evolutionary variations in the star-formation rate (SFR) and extinction in disk galaxies beginning from their formation. The results obtained are compared with observational estimates of the SFRe and extinction at cosmological redshifts z ≤ 7. The formof themass-radius relation for disk galaxies is discussed. It is proposed that the mass-radius relation is a consequence of a mass-angular momentum relation. Analysis of the influence of the form of the mass-radius relation on the evolutionary variations in the SFR and extinction testify that this influence is very small. The SFRs and extinctions at various redshifts z obtained in the models are in agreement with observations.  相似文献   

12.
We have carried out numerical simulations of the dynamical evolution of galaxy clusters taking into account merging when the relative velocities of the colliding galaxies are low. In particular, we study the evolution of the structure, mass spectrum, and velocity spectrum of a cluster of a thousand galaxies, as well as the growth of the central supermassive cD galaxy. The initial velocity dispersion of the galaxies and the rotation of the cluster were taken into account. The observed logarithmic spectrum dN\(\tfrac{{dM}}{M}\) was adopted as the initial mass spectrum. The dynamical evolution of galaxy clusters, allowing for the possible merging of colliding galaxies, results in the emergence of a central supermassive galaxy, whose mass continuously increases due to mergers. This occurs only if the mass of the central galaxy becomes greater than ~0.1 of the total mass of the cluster. The observation of cD galaxies with relative masses of ~0.01 suggests that they initially formed in the cluster core, merged with nearby galaxies, and accreted intergalactic gas. The model indicates that a logarithmic galaxy mass spectrum is preserved during the cluster evolution, despite the substantial decrease in the number of galaxies in the cluster with time. The model can also reproduce the observed mass distribution with distance from the cluster center, M r r 1.7.  相似文献   

13.
The conditions for the acceleration of the spatial motions of stars by close-binary supermassive black holes (SMBHs) in galactic nuclei are analyzed in order to derive the velocity distribution for stars ejected from galaxies by such black holes. A close binary system consisting of two SMBHs in circular orbits was subject to a spherically symmetrical “barrage” of solar-mass stars with various initial velocities. The SMBHs were treated as point objects with Newtonian gravitational fields. Models with binary component-mass ratios of 1, 0.1, 0.01, and 0.001 were studied. The results demonstrate the possibility of accelerating neutron stars, stellar-mass black holes, and degenerate dwarfs to velocities comparable to the relative orbital velocities of the binary-SMBH components. In the stage when the binary components are merging due to the action of gravitational-wave radiation, this velocity can approach the speed of light. The most massive binary black-holes (M ? 109M) can also accelerate main-sequence stars with solar or subsolar masses to such velocities.  相似文献   

14.
We probed the relation between properties of Seyfert nuclei and morphology of their host galaxies. We selected Seyfert galaxies from the Sloan Digital Sky Survey with redshifts less than 0.2 identified by the Vé ron Catalog (13th). We used the FracDev parameter from SDSS galaxy fitting models to represent the bulge fractions of the Seyfert host galaxies. We found that the host galaxies of Seyfert 1 and Seyfert 2 are dominated by large bulge fractions, and Seyfert 2 galaxies are more likely to be located in disk galaxies whereas most of the Seyfert 1 galaxies are located in bulge-dominant galaxies. These results indicate that the types of AGNs are related to their host galaxies and cannot be explained by the traditional unification model of Seyfert galaxies.  相似文献   

15.

The conditions for the formation of close binaries containing main-sequence stars, degenerate dwarfs of various types, neutron stars, and black holes of various masses are considered. The paper investigates the evolution of the closest binary systems under the influence of their gravitational-wave radiation. The conditions under which the binary components can merge on a time scale shorter than the Hubble time as a result of their emission of gravitational waves are estimated. A self-consistent scenario model is used to estimate the frequency of such events in the Galaxy, their observable manifestations, the nature of the merger products, and the role of these events in the evolution of stars and galaxies. The conditions for the formation and evolution of supermassive binary black holes during collisions andmergers of galaxies in their dense clusters are studied.

  相似文献   

16.
We present the results of observations obtained using the MASTER robotic telescope in 2005–2006, including the earliest observations of the optical emission of the gamma-ray bursts GRB 050824 and GRB 060926. Together with later observations, these data yield the brightness-variation law t ?0.55±0.05 for GRB 050824. An optical flare was detected in GRB 060926—a brightness enhancement that repeated the behavior observed in the X-ray variations. The spectrum of GRB 060926 is found to be F E E ?β , where β = 1.0 ± 0.2. Limits on the optical brightnesses of 26 gamma-ray bursts have been derived, 9 of these for the first time. Data for more than 90% of the accessible sky down to 19 m were taken and reduced in real time during the survey. A database has been composed based on these data. Limits have been placed on the rate of optical flares that are not associated with detected gamma-ray bursts, and on the opening angle for the beams of gamma-ray bursts. Three new supernovae have been discovered: SN 2005bv (type Ia)—the first to be discovered on Russian territory, SN 2005ee—one of the most powerful type II supernovae known, and SN 2006ak (type Ia). We have obtained an image of SN 2006X during the growth stage and a light curve that fully describes the brightness maximum and exponential decay. A new method for searching for optical transients of gamma-ray bursts detected using triangulation from various spacecraft is proposed and tested.  相似文献   

17.
NumericalN-body studies of the dynamical evolution of a cluster of 1000 galaxies were carried out in order to investigate the role of dark matter in the formation of cD galaxies. Two models explicitly describing the darkmatter as a full-fledged component of the cluster having its own physical characteristics are constructed. These treat the dark matter as a continuous underlying substrate and as “grainy” matter. The ratio of the masses of the dark and luminous matter of the cluster is varied in the range 3–100. The observed logarithmic spectrum dNdM / M is used as an initial mass spectrum for the galaxies. A comparative numerical analysis of the evolution of the mass spectrum, the dynamics of mergers of the cluster galaxies, and the evolution of the growth of the central, supermassive cD galaxy suggests that dynamical friction associated with dark matter accelerates the formation of the cD galaxy via the absorption of galaxies colliding with it. Taking into account a dark-matter “substrate” removes the formation of multiple mass-accumulation centers, and makes it easier to form a cD galaxy that accumulates 1–2% of the cluster mass within the Hubble time scale (3–8 billion years), consistent with observations.  相似文献   

18.
The relationship between the masses and metallicities of galaxies could be non-monotonic, due to the outflow of matter in these systems. It is shown using a simple, one-zone, chemical-dynamicalmodel that the metallicity should be a non-monotonic function of the mass for spheroidal dwarf galaxies with low masses of M ≤ 108 M , and a monotonically growing function for galaxies with higher masses. This is consistent with observations.  相似文献   

19.
BV RI data are presented for the majority of steep-spectrum objects in the RC catalog with m R <23.5m. Previously developed programs are applied to these data to estimate the redshifts and ages of the stellar systems of the host galaxies. Applying this program to the color data (BV RI JHK) for distant radio galaxies with spectroscopic redshifts indicates that this approach provides accurate estimates of the redshifts of such radio galaxies, close to those obtained using field galaxies (~20%). The age estimates are much less trustworthy, but a lower limit to the ages of objects that are not very distant (z<1.5) can be determined with certainty. We have identi fied several galaxies whose formal ages exceed the age of the Universe at the corresponding z in simple Cold Dark Matter models for the Universe. The possibility of using such objects to elucidate the role of “dark energy” is discussed. This paradox disappears in models with cosmological constants (Λ terms) equal to 0.6–0.8.  相似文献   

20.
The statistical relation between the masses of supermassive black holes (SMBHs) in disk galaxies and the kinematic properties of their host galaxies is analyzed. Velocity estimates for several galaxies obtained earlier at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences and the data for other galaxies taken from the literature are used. The SMBH masses correlate well with the rotational velocities at a distance of R ≈ 1 kpc, V 1, which characterize the mean density of the central region of the galaxy. The SMBH masses correlate appreciably weaker with the asymptotic velocity at large distances from the center and the angular velocity at the optical radius R 25. We have found for the first time a correlation between the SMBH mass and the total mass of the galaxy within the optical radius R 25, M 25, which includes both baryonic and “dark” mass. The masses of the nuclear star clusters in disk galaxies (based on the catalog of Seth et al.) are also related to the dynamical mass M 25; the correlations with the luminosity and rotational velocity of the disk are appreciably weaker. For a given value of M 25, the masses of the central cluster are, on average, an order of magnitude higher in S0-Sbc galaxies than in late-type galaxies, or than the SMBH masses. We suggest that the growth of the SMBH occurs in the forming “classical” bulge of the galaxy over a time < 109 yr, during a monolithic collapse of gas in the central region of the protogalaxy. The central star clusters form on a different time scale, and their stellar masses continue to grow for a long time after the growth of the central black hole has ceased, if this process is not hindered by activity of the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号