首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Propagation of a solitary wave over rigid porous beds   总被引:1,自引:0,他引:1  
The unsteady two-dimensional Navier–Stokes equations and Navier–Stokes type model equations for porous flows were solved numerically to simulate the propagation of a solitary wave over porous beds. The free surface boundary conditions and the interfacial boundary conditions between the water region and the porous bed are in complete form. The incoming waves were generated using a piston type wavemaker set up in the computational domain. Accuracy of the numerical model was verified by comparing the numerical results with the theoretical solutions. The main characteristics of the flow fields in both the water region and the porous bed were discussed by specifying the velocity fields. Behaviors of boundary layer flows in both fluid and porous bed regions were also revealed. Effects of different parameters on the wave height attenuation were studied and discussed. The results of this numerical model indicate that for the investigated incident wave as the ratio of the porous bed depth to the fluid depth exceeds 10, any further increase of the porous bed depth has no effect on wave height attenuation.  相似文献   

2.
Laboratory experiments were performed to study the wave damping induced by a porous bed. During the propagation of waves over a porous medium the wave characteristics change: a significant wave height attenuation of about 20–30% is observed and, in almost all cases, an increase in wavelength. The wave decay is found to depend on the wave characteristics like the wave height, the wavelength and the wave shape. We have also studied the influence of the geometric properties of the porous bed (i.e. thickness and length) on the wave dissipation. It is found that the attenuation of the wave height increases with the permeable bed thickness and that there is a maximum wave dissipation for a length of the porous seabed equal to 2.0–2.5 times the wavelength. A comparison is also made of our findings with available literature results. A parametric study of the wave damping has been performed by varying the values of the resistance coefficients derived by both literature and experiments. Literature analytical models have been applied by using the resistance coefficients that better describe our flow conditions. All models in use underpredict the observed wave attenuation for any sensible values of the resistance coefficients.  相似文献   

3.
In this study, an analytical solution is developed for the problem of periodic waves propagating over a poro-elastic seabed of infinite depth. Water waves above the seabed are described using the linear wave theory. The poro-elastic seabed is modelled based on the Biot theory in which the inertia effect and Darcy's friction are added. Continuity of dynamic pressure and flow flux at the interfacial seabed surface are considered. Adopting an approach similar to Hsu et al. (1993), the governing equations for the pore pressure and displacements of the poro-elastic medium are derived. The present analytic solution compares favorably well with experimental results by Yamamoto et al. (1978), and analytical results by Song (1993) for the case of fine sand. Using the present theory, variations of the wavelength and fluid pressure caused by coupling of waves and the poro-elastic seabed are discussed. Results show that higher elasticity of the poro-elastic seabed induces larger interface pressure, but higher permeability causes smaller pressure on the seabed interface. The wave length is affected by the poro-elastic seabed and becomes shorter for softer seabed and shallower water depth.  相似文献   

4.
The hydroelastic response of a semi-infinite thin elastic plate floating on a two-layer fluid of finite depth due to obliquely incident waves is investigated. The upper and lower fluids with different densities separated by a sharp and stable interface are assumed to be inviscid and incompressible and the motion to be irrotational. Simply time-harmonic incident waves of the surface and interfacial wave modes with a given angular frequency are considered within the framework of linear potential flow theory. With the aid of the methods of matched eigenfunction expansion and the inner product of the two-layer fluid, a closed system of simultaneous linear equations is derived for the reflection and transmission coefficients of the series solutions. Based on the dispersion relations for the gravity waves and the flexural–gravity waves in a two-layer fluid and Snell’s law for refraction, we obtain a critical angle for the incident waves of the surface wave mode and three critical angles for the incident waves of the interfacial wave mode, which are related to the existence of the propagating waves. Graphical representations of the series solutions show the interaction between the water waves and the plate. The effects of several physical parameters, including the density and depth ratios of the fluid and the thickness of the plate, on the wave scattering and the hydroelastic response of the plate are studied. It is found that the variation of the thickness of the plate may change the wave numbers and the critical angles. The density ratio is the main factor to influence the wave numbers of the interfacial wave modes. Finally, the stress state is considered.  相似文献   

5.
Abstract

The problem of forced vibration of a slightly inelastic porous bed by water waves is treated analytically on the basis of a linearized expression of the nonlinear damping term for the grain‐to‐grain friction in bed soils and the linear theory by Biot (1962a [Jour. Appl. Physics, 33:1482–1498]) on the elastic wave propagation in porous media. A dispersion relation of water waves is obtained as a function of wave frequency, water depth, permeability, Poisson's ratio, rigidity, and specific loss of bed soil. Three types of elastic waves are induced in a bed by water waves: a shear wave and a compressional wave in the skeletal frame of soil, and a compressional wave in the pore fluid. The compressional wave, due to the motion of the pore fluid relative to the skeletal frame of soil, is highly damped by the viscosity of pore fluid and only a short range effect near the boundaries of discontinuity, such as a sea‐seabed interface. The seabed response to water waves is characterized by the two Mach numbers, i.e., the ratio of water‐wave speed to shear‐wave speed in soil and the ratio of water‐wave speed to compressional‐wave speed in soil. Most of the water‐wave propagation problems fall into the subsonic flow condition, where elastic waves in the bed travel faster than water waves.

For sandy beds, generally the speeds of compressional and shear waves are much higher than the phase velocity of the water wave. For this case, the solution of the Coulomb‐damped poroelastic bed response presented in this paper approaches the solution of the massless poroelastic bed response in Yamamoto et al. (1978 [Jour. Fluid Mech., 87(1): 193–206]). The damping of water waves due to internal grain‐to‐grain friction is equally or more significant than the damping due to percolation in sand beds.

For clay beds, the speed of the shear wave in soil becomes low and comparable to the phase speed of the water wave. The bed motion for this case is considerably amplified due to the near‐resonance vibration of shear mode of bed vibration. The water wavelength on a clay bed is significantly shortened compared to the water wavelength over a rigid bed. The water wave damping due to internal grain‐to‐grain friction in soil becomes much larger compared to the water wave damping due to percolation in clay beds. Long water waves over a soft clayey bed attenuate within several wavelengths of travel distance.  相似文献   

6.
1 Introduction Interfacial waves travelling along the interface between two fluids of different densities can be often observed in subsurface layers of the ocean since the upper subsurface layer is warmer over much of the o- cean (Umeyama, 2002). They are…  相似文献   

7.
倪云林  滕斌 《海洋学报》2021,43(10):90-96
本文建立了波浪在局部可渗透水平海床上传播的解析解,并研究了波浪在局部可渗透海床上的透射、反射问题。研究中将计算域划分为4个区域,中间区域为流域,海底可渗透,其下区域为多孔介质海床,左右两个区域也为流域,但海底不可渗透。应用线性波浪理论,建立了各流域包含非传播模态的速度势表达式,给出了海床内部的压强表达式,并利用交界面上匹配条件,求解了表达式中的待定系数。基于该解析模型,探讨了海床渗透系数、相对水深、渗透海床长度对波浪传播变形的影响。结果表明,波高沿程衰减,强度随渗透系数、渗透海床长度的增加以及相对水深的减小而变大;局部可渗透海床会引起波浪的反射和透射,随着海床长度的增加,反射系数振荡变化,并最终趋于常数,透射系数指数衰减,并最终趋于0。  相似文献   

8.
In this study, a new analytical solution for the wave-induced seabed response in a multi-layered poro-elastic seabed is developed. The seabed is treated as a multi-layered porous medium and characterized by Biot’s theory. The displacements of the solid skeleton and the pore pressure are expressed in terms of two scalar potentials and one vector. Then, the Biot’s dynamic equation can be solved using Fourier transformation and reducing to Helmholtz equations. To obtain the general solutions for the multi-layered poro-elastic seabed in the frequency-wave-number domain, the transmission and reflection matrices (TRM) method is used to form the equivalent stiffness. Using the boundary conditions and continuous conditions, the frequency-wave-number domain solutions are obtained. Finally, the time-space domain solutions for the multi-layered poro-elastic seabed are obtained by means of the inverse Fourier transformation with respect to the horizontal coordinate. Based on the new solution, a parametric study is carried out to examine the effects of soil characteristics (number of layers, permeability and shear modulus) and wave characteristics (water depth and wave steepness) on seabed responses. The results indicate that the seabed response is affected significantly by permeability, shear modulus and relative water depth.  相似文献   

9.
The wave dispersion equation has played a very important role in the development of ocean surface wave theories. The evaluation of the length of a water wave is an essential example of solving the dispersion relation. Conventional ocean wave theories have been based on an assumption of a rigid impermeable seabed. Thus, the conventional wave dispersion equation can only be used in the case of a wave propagating over a rigid impermeable seabed. For waves propagating over a porous seabed (such as a sandy bed), the conventional dispersion relation is no longer valid because of the absence of the characteristics of the porous seabed. The objective of this study is to establish a new wave dispersion equation for waves propagating over a porous seabed. Based on the new relation, the effects of a porous seabed on wave characteristics (such as the wavelength and wave profile) are discussed in detail.  相似文献   

10.
Wave transformation over submerged permeable breakwater on porous bottom   总被引:1,自引:0,他引:1  
A numerical model is presented in this study to investigate the wave transformation over a submerged permeable breakwater on a porous slope seabed. For this purpose, the time-dependent mild-slope equation is newly derived for waves propagating over two layers of porous medium. This new mild-slope equation involves the parameters of the porous medium, and it is a type of hyperbolic differential equation, therefore numerically efficient. The validity of the present model is verified based on the comparisons with the previous experiments. The effects of the permeable properties of both the porous seabed and the submerged permeable breakwater are discussed in detail. The geometry of the submerged permeable breakwater to the wave transformation is also investigated based on the numerical solutions.  相似文献   

11.
A new coupling model of wave interaction with porous medium is established in which the wave field solver is based on the two dimensional Reynolds Averaged Navier-Stokes (RANS) equations with a closure. Incident waves, which could be linear waves, cnoidal waves or solitary waves, are produced by a piston-type wave maker in the computational domain and the free surface is traced through the Piecewise Linear Interface Construction-Volume of Fluid (PLIC-VOF) method. Nonlinear Forchheimer equations are adopted to calculate the flow field within the porous media. By introducing a velocity–pressure correction equation, the wave field and the porous flow field are highly and efficiently coupled. The two fields are solved simultaneously and no boundary condition is needed at the interface of the internal porous flow and the external wave. The newly developed numerical model is used to simulate wave interaction with porous seabed and the numerical results agree well with the experimental data. The additional numerical tests are also conducted to study the effects of seabed thickness, porosity and permeability coefficient on wave damping and the pore water pressure responses.  相似文献   

12.
Wave-induced instability of seabed may cause damage to coastal and offshore structures. This issue has been investigated mostly for mildly sloping (<5°) seabed considering uncoupled or one-way coupled response of wave and seabed interaction. However, some of the marine structures are founded on seabed with steeper slopes. In this study, the wave-induced response and instability of sloping seabed are evaluated using a coupled finite element model. The interaction between fluid and porous seabed accounting for the effect of fluid motion on the seabed response, and conversely the effect of seabed response on the fluid motion (but not on the surface wave profile) is considered. The results indicate that the system response (fluid pressure, stresses, etc.) and the extent of instantaneously liquefied zone within the sloping seabed with significant steepness are lesser than those for horizontal seabed. Moreover, for typical sediment and wave characteristics, for the flat seabed, the response obtained from fully coupled analysis is not significantly different from those obtained by uncoupled analysis. For the sloping bed, such difference is slightly greater as compared to that for the flat bed.  相似文献   

13.
The coupling numerical model of wave interaction with porous medium is used to study waveinduced pore water pressure in high permeability seabed.In the model,the wave field solver is based on the two dimensional Reynolds-averaged Navier-Stokes(RANS) equations with a k-ε closure,and Forchheimer equations are adopted for flow within the porous media.By introducing a Velocity-Pressure Correction equation for the wave flow and porous flow,a highly efficient coupling between the two flows is implemented.The numerical tests are conducted to study the effects of seabed thickness,porosity,particle size and intrinsic permeability coefficient on regular wave and solitary wave-induced pore water pressure response.The results indicate that,as compared with regular wave-induced,solitary wave-induced pore water pressure has larger values and stronger action on seabed with different parameters.The results also clearly show the flow characteristics of pore water flow within seabed and water wave flow on seabed.The maximum pore water flow velocities within seabed under solitary wave action are higher than those under regular wave action.  相似文献   

14.
Cnoidal wave theory is appropriate to periodic wave progressing in water whose depth is less than 1/10 wavelength. However, the cnoidal wave theory has not been widely applied in practical engineering because the formula for wave profile involves Jacobian elliptic function. In this paper, a cnoidal wave-seabed system is modeled and discussed in detail. The seabed is treated as porous medium and characterized by Biot's partly dynamic equations (up model). A simple and useful calculating technique for Jacobian elliptic function is presented. Upon specification of water depth, wave height and wave period, Taylor's expression and precise integration method are used to estimate Jacobian elliptic function and cnoidal wave pressure. Based on the numerical results, the effects of cnoidal wave and seabed characteristics, such as water depth, wave height, wave period, permeability, elastic modulus, and degree of saturation, on the cnoidal wave-induced excess pore pressure and liquefaction phenomenon are studied.  相似文献   

15.
《Coastal Engineering》2001,42(1):87-101
Water wave refraction–diffraction within a porous medium on an undulating seabed is considered based on linear wave theory. Using the model of wave-induced flow within a porous medium and Galerkin eigenfunction expansions, refraction–diffraction equations for surface waves are derived. With these equations, the wave reflection from a porous structure on a sloping beach is investigated and numerical results of reflection coefficients are obtained. A comparison between the present results with those in the literature is made for a special case and the agreement is satisfactory. This structure can be viewed as an idealized model of rubble-mound seawalls along coastlines.  相似文献   

16.
A simple conceptual formulation to compute seabed shear stress due to asymmetric and skewed waves is presented. This formulation generalizes the sinusoidal wave case and uses a variable friction factor to describe the physics of the boundary layer and to parameterize the effects of wave shape. Predictions of bed shear stresses agree with numerical computations using a standard boundary layer model with a kε turbulence closure. The bed shear stress formulation is combined with a Meyer-Peter and Müller-type formula to predict sheet flow bedload transport under asymmetric and skewed waves for a horizontal or sloping bed. The predictions agree with oscillatory water tunnel measurements from the literature.  相似文献   

17.
可渗透结构具有使波浪作用减弱的效应,而海水的层化及水波的非线性使结构的波绕射产生多层复杂机制。将可渗透结构应用于复杂海况条件中,海水的层化性、波浪的非线性及结构的透空性构成了波绕射的一个十分复杂的数学问题。该问题存在理论研究的必要性,而文章则着重探讨其数学分析的可能性。通过引入二层海的层化海模式及Stokes二阶波的非线性波模式,给出了二阶多色波对透空结构的波绕射的定解问题提法,提出了复合形式的二阶多色波辐射条件式及可渗透结构的二阶物面条件式,应用特征函数解法与积分法推导了多色波对结构绕射的一阶势解与二阶作用的耦合积分解式,并讨论了解式所涉及无穷积分的算法。  相似文献   

18.
本文研究了二层流体系统中波浪的衰减。上层为理想流体,下层为粘弹性Voigt体。导出了色散关系,计算了波浪衰减系数。对于粘性或弹性很大或很小的情况,导出了各种水深情况下近似的显式的衰减系数表示式。与精确的数值结果比较,近似程度很好。可供工程设计参考、使用。  相似文献   

19.
《Ocean Engineering》2004,31(5-6):561-585
The evaluation of the wave-induced seabed instability in the vicinity of a breakwater is particularly important for coastal and geotechnical engineers involved in the design of coastal structures. In this paper, an analytical solution for three-dimensional short-crested wave-induced seabed instability in a Coulomb-damping porous seabed is derived. The partial wave reflection and self-weight of breakwater are also considered in the new solution. Based on the analytical solution, we examine (1) the wave-induced soil response at different location; (2) the maximum liquefaction and shear failure depth in coarse and fine sand; (3) the effects of reflection coefficients; and (4) the added stresses due to the self-weight of the breakwater.  相似文献   

20.
Interfacial waves and wave-induced tangential stress are studied for geostrophic small amplitude waves of two-layer fluid with a top free surface and a flat bottom. The solutions were deduced from the general form of linear fluid dynamic equations of two-layer fluid under the f-plane approximation, and wave-induced tangential stress were estimated based on the solutions obtained. As expected, the solutions derived from the present work include as special cases those obtained by Sun et al. (2004. Science in China, Ser. D, 47(12):1147-1154) for geostrophic small amplitude surface wave solutions and wave-induced tangential stress if the density of the upper layer is much smaller than that of the lower layer. The results show that the interface and the surface will oscillate synchronously, and the influence of the earth''s rotation both on the surface wave solutions and the interfacial wave solutions should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号