首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early Cenozoic magmatism in the eastern Sakarya Zone (NE Turkey) provides an important constraint on the regional tectono-magmatic evolution of the region. Early Eocene syn-collisional adakitic rocks are observed as small stocks with outcropping areas commonly less than 10 km2. This study presents petrography, whole-rock geochemistry and Sr-Nd-Pb isotope data, as well as in-situ 40Ar/39Ar age constraints on one of these adakitic andesites in the Altınpınar area of Gümüşhane, and discusses source region, petrological processes and geodynamic setting prevailed during their genesis. Andesites commonly show microlitic porphyric and vitrophyric porphyric textures, and include significant amounts of mafic microgranular enclaves (MMEs). Plagioclase, hornblende, Fe-Ti oxides and minor pyroxene are the main mineral phases. In-situ 40Ar-39Ar amphibole dating constrains the cooling age of andesites into a time span from 52.8 ± 1.3–48.8 ± 1.9 Ma. Andesites are medium to high-K calc-alkaline and display most of the signatures typical of those of the adakites. They are characterized by moderate MgO (1.7–4.1 wt%), low Y (9−14 ppm), Yb (0.9–1.5 ppm), and HREE and high Sr (325−964 ppm) contents, and high Sr/Y (36–76) ratios. 87Sr/86Sr(t) (0.704948−0.705100) and 143Nd/144Nd(t) (0.512588−0.512628) ratios are in the isotopic range of the adakites. All these geochemical and isotopic data suggest that the parental magma of adakitic andesites has been produced by partial melting of oceanic basalts under amphibole-eclogite facies conditions during the breakoff of the northern Neotethyan oceanic slab.  相似文献   

2.
Lake Seyfe is located in a closed basin near K?r?ehir in the central Anatolian region, Turkey. The aim of this study is to evaluate the groundwater quality and effects of lithogenic contamination carried out in the Lake Seyfe basin, which is represented by various lithologies and groundwater types. Seyfe, Horla and Akp?nar springs are recharged through marbles at the western and southwestern of the basin are ultimately and discharged into the K?z?l?rmak Formation and Lake Seyfe. The waters of deep wells drilled into the marbles are of bicarbonate type (type I) in the Ca2+–Mg2+–HCO3 ? and Ca2+–HCO3 ? facies. Özlühüyük spring and waters from most of trenches and shallow wells, which are fed by the K?z?l?rmak Formation, have a mixed (type II) composition in the Ca2+–Mg2+–HCO3 ?–Cl? facies. Groundwater in the alluvium and K?z?l?rmak Formation along Lake Seyfe has a salty (type III) character in the Na+–Cl? facies. The main reasons of formation and change of the groundwater salinity and hydrochemical facies in the Seyfe basin are causing the various (a) lithogenic pollution and heterogeneity of the K?z?l?rmak Formation, (b) salinity of the upper soil zones, and (c) evaporation of the trench and channel waters open to the atmosphere. Considering parameters such as sodium hazard, specific conductivity, bicarbonate and carbonate hazards, waters in the study area are generally suitable for agricultural usage.  相似文献   

3.
Delineation of the groundwater potential zones is one of the most essential process for the sustainable management of the groundwater sources. However, groundwater studies are quite hard and complex for many regions besides consuming time and cost. This study focused on the groundwater potential mapping in Bey?ehir Lake Basin. Mainly, fuzzy-analytic hierarchy process (fuzzy-AHP) integrated with GIS was used to determine potential zones for groundwater. Seven parameters, namely lithology, lineament, drainage density, land use, slope, soil type, and rainfall were evaluated and Groundwater Potential Index (GWPI) was calculated using weight and rating coefficients of each parameter. According to obtained results, GWPI varies from 0.07665 to 0.28243 in the basin. The low, moderate, and high groundwater potential classes were determined with quantile classification method. The groundwater potential map demonstrates that the high groundwater potential area is located around the lake shore, in the alluvium and limestone fields because high permeability rates depend on soil type, low slope, karstic structure, and agricultural activities in these regions. In addition, the distribution of the springs confirms with groundwater potential area determined with this study.  相似文献   

4.
It is important to know the distribution and transfer of radionuclides such as uranium, thorium, and potassium, which exist naturally in the environment we live in. For this reason, measurements of these natural radionuclides have been carried out for 15 gravel samples collected from Konyaalt? Beach, Antalya. In order to measure the natural activity concentrations of potassium-40, uranium-238, and thorium-232 radionuclides, we performed the measurements by applying a gamma spectrometry method with a “3?×?3” NaI(Tl) detector, which is a multichannel analytical detector in the Suleyman Demirel University gamma spectrometry laboratory. The minimum, maximum, and mean values for the 226Ra activity concentration were measured as 19.74 Bq/kg, 37.03 Bq/kg, and 31.64 Bq/kg, respectively. The minimum, maximum, and mean values for the 232Th activity concentration were measured as 12.76 Bq/kg, 34.32 Bq/kg, and 26.67 Bq/kg, respectively. The minimum, maximum, and mean values for the 40K activity concentration were measured as 196.37 Bq/kg, 421.13 Bq/kg, and 350.42 Bq/kg, respectively. Dose parameters and radiation damage indices were calculated using experimentally measured activity results and the resulting dose and hazard index values were compared with the determined limit values. It can be concluded that no risk may threat in terms of the hazard index values. In addition, all results obtained in terms of calculated dose values except for annual gonadal dose are below the recommended limit values.  相似文献   

5.
Dams constructed on the seismically active regions have a high-risk potential for downstream life and property. Strong ground motion can result in instability of the dam and strength loss of foundation. Active faults within the foundation of dam have the potential to cause damaging displacement of the structures. Appropriate design measures should be considered to obtain rational solution to the problem of catastrophic release of water from the reservoir, and especially to resist earthquake loads. Safety concerns for dams under the earthquake loads involve the seismic hazard evaluation of dam site for the overall stability of structure. Various types of analyses can be used, ranging from a simplified analysis to more complex procedures based on ground motion parameters and response spectra. This paper briefly evaluates seismic hazard analyses for dam structures, and introduces the analyses for thirty-six dams with height ranging from 15 to 195 m in Kızılırmak basin, Turkey. The seismic hazard analyses have indicated that peak ground acceleration varies within a wide range (0.09–0.45 g) for the dam sites of the basin.  相似文献   

6.
Human activities and agriculture have had direct and indirect effects on the rates of contamination of groundwater in the Incesu-Dokuzp inar spring area. Direct effects include dissolution and transport of excess quantities of fertilizers with associated materials and hydrological alterations related to irrigation and drainage. Indirect effects may include changes in water–rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agricultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO 3, N 2, Cl, SO 4 2, H +, K, Mg, Ca, Fe, Cu, B, Pb, and Zn, as well as a wide variety of pesticides and other organic compounds. For reactive contaminants like NO 3, it is recommended that a combination of hydrochemical and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. The water type of Dokuzp inar springs is mainly Na–Mg–Ca–Cl–HCO 3. Note that the water types of the springs were directly related to the hydrogeochemical properties of outcrops at the study area. Thus, the high concentration of Ca 2+ and HCO 3 is mainly related to the high CO 2 contents in the marbles, whereas the high Na concentration arises from the existing syenite, volcanic ash, basalt, and clay units, although the Incesu-Dokuzp inar springs cover most of the drinking and irrigation water demands of this area. The high concentrations of NO 3 and NaCl show that the area around the springs is continuously being contaminated by untreated sewage and agricultural wastes, especially during dry periods. Therefore, this approach is based on the vulnerability studies of the catchment area, determination of the transfer time of the pollutant, and the water-bearing formations of Incesu-Dokuzp inar springs. Vulnerability in this study is defined as the intrinsic hydrogeochemical characteristics of an aquifer, which may show the sensitivity of groundwater to be contaminated by different human activities.  相似文献   

7.
The western Anatolian volcanic province formed during Eocene to Recent times is one of the major volcanic belts in the Aegean–western Anatolian region. We present new chemical (whole-rock major and trace elements, and Sr, Nd, Pb and O isotopes) and new Ar/Ar age data from the Miocene volcanic rocks in the NE–SW-trending Neogene basins that formed on the northern part of the Menderes Massif during its exhumation as a core complex. The early-middle Miocene volcanic rocks are classified as high-K calc-alkaline (HKVR), shoshonitic (SHVR) and ultrapotassic (UKVR), with the Late Miocene basalts being transitional between the early-middle Miocene volcanics and the Na-alkaline Quaternary Kula volcanics (QKV). The early-middle Miocene volcanic rocks are strongly enriched in large ion lithophile elements (LILE), have high 87Sr/86Sr(i) (0.70631–0.71001), low 143Nd/144Nd(i) (0.512145–0.512488) and high Pb isotope ratios (206Pb/204Pb = 18.838–19.148; 207Pb/204Pb = 15.672–15.725; 208Pb/204Pb = 38.904–39.172). The high field strength element (HFSE) ratios of the most primitive early-middle Miocene volcanic rocks indicate that they were derived from a mantle source with a primitive mantle (PM)-like composition. The HFSE ratios of the late Miocene basalts and QKV, on the other hand, indicate an OIB-like mantle origin—a hypothesis that is supported by their trace element patterns and isotopic compositions. The HFSE ratios of the early-middle Miocene volcanic rocks also indicate that their mantle source was distinct from those of the Eocene volcanic rocks located further north, and of the other volcanic provinces in the region. The mantle source of the SHVR and UKVR was influenced by (1) trace element and isotopic enrichment by subduction-related metasomatic events and (2) trace element enrichment by “multi-stage melting and melt percolation” processes in the lithospheric mantle. The contemporaneous SHVR and UKVR show little effect of upper crustal contamination. Trace element ratios of the HKVR indicate that they were derived mainly from lower continental crustal melts which then mixed with mantle-derived lavas (~20–40%). The HKVR then underwent differentiation from andesites to rhyolites via nearly pure fractional crystallization processes in the upper crust, such that have undergone a two-stage petrogenetic evolution.  相似文献   

8.
The number of sinkholes (locally known as obruks) has increased rapidly in recent years near Karap?nar, located in the semi-arid Konya Closed Basin in Central Anatolia. Nineteen sinkholes have formed in the last 33 years (1977–2009) as a result of the collapse of cavity roofs in the Neogene lacustrine limestone in the Obruk Plateau and beneath Quaternary lake sediments in the Karap?nar-Hotam?? Plain. Of these, 13 have formed within the past 4 years (2006–2009). The Obruk Plateau takes its name from the presence of several hundred paleo-sinkholes which formed as a result of natural processes during the Quaternary period. More recently, human activity has induced the formation of new sinkholes, which presents a hazard to life and property. Changing agricultural patterns have led to the opening of thousands of deep wells in recent years, and increased water pumping currently exceeds the sustainable yield of the aquifer. Thus the formation of sinkholes has been triggered by a combination of natural and human causes. The groundwater level has dropped almost 24 m in the vicinity of Karap?nar during the last 26 years (1983–2008). Approximately 8 m of this drop occurred within the 4 years prior to the study (2005–2008). Legally-binding precautions must be taken to prevent further water table decline, in order to decrease sinkhole formation within the basin in the years to come.  相似文献   

9.
The concentrations and distribution of natural and artificial radionuclides in sediment and water samples collected from Fırtına River in the Eastern Black Sea region of Turkey were investigated with an aim of evaluating the environmental radioactivity and radiation hazard. Natural gross α and gross β activities were determined for 21 different water samples, and the activity concentrations were obtained for 226Ra, 214Pb, 214Bi, 228Ac, 208Tl, 40K and 137Cs in 20 different sediment samples. The obtained results showed that natural gross α and gross β activity concentrations in water samples range from 12.4 ± 3.4 to 66.2 ± 9.2 mBq l−1 and from 27.9 ± 3.3 to 133.3 ± 4.1 mBq l−1, respectively. The mean activity concentrations were 32.6 ± 3.8 mBq l−1 for gross α and 69.9 ± 4.4 mBq l−1 for gross β. Generally, the gross β activities were higher than the corresponding gross α activities. The average concentrations of 238U and 232Th daughter products vary from 11 to 167 Bq kg−1 and from 16 to 107 Bq kg−1, respectively. The concentrations of 40K and 137Cs vary from 51 to 1,605 Bq kg−1 and from 0.8 to 42 Bq kg−1, respectively. Sediment characterization was also investigated using grain size, thin section and XRD analysis.  相似文献   

10.
In this study, reservoir temperatures of Balıkesir geothermal waters in northwestern Turkey are estimated with various geochemical models. The geothermal fluids in the region are represented by Na–SO4, Na–HCO3 and Ca–HCO3 type waters with discharge temperatures up to 98°C. It was determined that the solubility of silica in most of the waters is controlled by the chalcedony phase. Equilibrium states of the Balıkesir thermal waters studied by means of Na–K–Mg–Ca diagram, mineral saturation calculations and activity diagrams in the system composed of Na2O–CaO–K2O–Al2O3–SiO2–H2O phases approximate a reservoir temperature of about 120°C. Most of the waters are found to be equilibrated with calcite, chalcedony ± quartz and muscovite at predicted temperature ranges, similar to those calculated from the chemical geothermometers.  相似文献   

11.
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are two sorts of important pollutants, which were frequently detected in natural aquatic environments at the same time. Surfacial sediments (SSs), suspended particulates (SPs) and natural surface coatings (NSCs) are recognized as the key solid sinks and sources of heavy metals (HMs) and organic materials (OMs) in natural water systems, playing critical roles in the cycling and transformation of pollutants. The behaviors of HMs in the multi-phases (SSs, SPs and NSCs) have been well investigated, but less reports on those of PAHs, especially on those of HMs and PAHs simultaneously in the multi-phases. Hence, the relationship between HMs (Pb, Cd and Cu) and PAHs (fluorene, phenanthrene, anthracene and pyrene) in the multi-phases of Nanhu Lake in Changchun, China, was studied in this study using methods of acid digestion and extraction, in order to reveal the combined pollution of HMs and PAHs in Nanhu Lake. The information indicated that HMs and PAHs have the similar distribution patterns in the multi-phases of Nanhu Lake, with increasing levels of riMs and PAHs in the SSs, SPs and NSCs. And the enrichment capacities of SPs and NSCs for HMs and PAHs in the water were similar to each other and much greater than that of SSs, implying that SPs and NSCs contributed more to the transference and transformation of HMs and PAHs in the aquatic environments. The relationship between HMs and PAHs has been analyzed by SPSS statistical analysis, and the results showed that the significant correlation of riMs and PAHs was found in the SSs at the confidence level of p = 0.05, but Pb, Cd or Cu had no correlation with any monomer of PAHs in the SPs or NSCs, highlighting the existence of combined pollution of HMs and PAHs in SSs. This was partly due to the relative lability of SPs or NSCs compared to SSs resulting from the water quality of being varied.  相似文献   

12.
Hydrochemical analysis results suggest four different water types: bicarbonate dominant water (facies-I), sulfate dominant cold brine water (facies-II), sodium-bicarbonate dominant thermal water and thermal and mineralized water (facies-III), and sulfate–chloride dominant thermal and mineralized water (facies-IV). The mineral content/salinity of the water is related to the ions that these waters dissolve from the minerals on the rocks during infiltration and circulation in the saturated zone. Gypsum cover units that exist on the granitoids in the region is the main factor for the ion increase in the facies III geothermal water similar to the cold brine water (facies II). Isotopic analyses indicate that the thermal springs (Dutlu bath spring, Aya? bath well, Çoban bath well and Kapullu bath spring) are of meteoric origin and receive recharge from precipitation in the Beypazar? granitoids and around gypseous formations with elevations of about 950–1,150 m. Karakaya bath well and Il?ca bath spring thermal water points are recharged from the Bilecik limestone hills, Tekke volcanics and ?ncedoruk Formations. Karakoca mineral spring of thermal and mineralized water is recharged from out of the study area. According to oxygen-18 (SO42?) and sulfur-34 (SO42?) contents, sulfate in water samples from Aya? and Dutlu resorts as well as Çoban bath is derived from the gypsum of Kirmir Formation as the primary source. Sulfates of the Kapullu bath water and Karakoca mineral water originate from secondary sources such as pyrite oxidation and bacteriological reduction.  相似文献   

13.
The study area is 35 km east of the city center of Mu, Turkey. The rock units in the area include Paleozoic Bitlis Metamorphites, Cenozoic flysch and Solhan Volcanities and Pliocene formations. A long-term discharge change was monitored in the Karasu spring. The amount of water discharged by the spring during June 3 and October 11, 2002 was 7.18×106 m3 while its storage capacity during May 26 and November 11, 2002 was 4.42×106 m3.NH4 – N, NO2 – N, NO3 – N, total PO4 – P, SO4 and total organic carbon (TOC) contamination were determined in the recharge area of the spring and other well and spring waters in the vicinity. NH4 – N, NO2 – N, NO3 – N, total PO4 – P, SO4 and total organic carbon contamination around the Budak, ivbai, Gölbai, Sazlikbai and Altinova villages are well above the drinking water standards of the Turkish Standard Institute (TSE) and World Health Organization (WHO) (1984). Similarly, water samples of K4, K5 and K6 branches of the Karasu spring and S1, S2, S3 and S4 points in the swamp area yielded concentrations much more than limit values.  相似文献   

14.
E?irdir Lake is the second largest fresh water lake with 482 km2 surface area of Turkey. The lake is an indispensable water source for our country and region because of available water capacity and usage aims such as drinking-irrigation water, tourism, and fishing. However, especially contaminants located in the E?irdir Lake catchment affect the lake water quality negatively in times. Therefore, determination of the water quality of the lake has quite importance for region human health and sustainable usage of the lake. The major factors that control the quality of the E?irdir Lake water are agricultural activities in the basin, water–rock interaction, and domestic and industrial wastes. This study investigates the anthropogenic and geologic impact originated from pollution sources and water–rock interaction in the lake watershed basin to the E?irdir Lake water quality. For this purpose, geological, hydrogeological, and hydrological properties of the lake basin with point and nonpoint pollution sources were investigated. To determine the water quality of the lake, 48 water samples were collected especially from locations representing effects of pollutants in May and October 2009. The analysis results were compared with maximum permissible limit values recommended by World Health Organization and Turkish drinking water standards. The contents of all chemical and physical parameters are higher in dry periods than wet period, and water pollution was observed at discharge points of the streams into the lake. Also, pH, turbidity, potassium, chemical oxygen demand, ammonium, aluminum, iron, and lead concentrations were found to be above drinking water standards.  相似文献   

15.
The Seferihisar-Bal?ova Geothermal system (SBG), Turkey, is characterized by temperature and hydrochemical anomalies along the faults: thermal waters in northern Bal?ova are heated meteoric freshwater, whereas the hot springs of the southern Seferihisar region have a strong seawater contribution. Previous numerical simulations of fluid flow and heat transport indicated that focused upsurge of hot water in faults induces a convective-like flow motion in surrounding units. Salt transport is fully coupled to thermally driven flow to study whether fault-induced convection cells could be responsible for seawater encroachment in the SBG. Isotope data are presented to support the numerical findings. The results show that fault-induced convection cells generate seawater plumes that extend from the seafloor toward the faults. At fault intersections, seawater mixes with rising hot thermal waters. The resulting saline fluids ascend to the surface along the fault, driven by buoyant forces. In Bal?ova, thick alluvium, minor faults and regional flow prevent ascending salty water from spreading at the surface, whereas the weak recharge flow in the thin alluvium of the southern SBG is not sufficient to flush the ascending hot salty waters. These mechanisms could develop in any faulted geothermal system, with implications for minerals and energy migration in sedimentary basins.  相似文献   

16.
The Beypazar? granitoid has been studied with respect to multi-radiometric dating and oxygen isotopic geothermometry. Radiometric dating of the granitoid yields zircon U-Pb isochron ages ranging from 72.5 ± 12.6 to 78.6 ± 4.7, and K-Ar ages of 71.4 ± 2.8 to 74.9 ± 2.9 and 59.5 ± 2.2 to 75.4 ± 2.9 Ma for hornblende and biotite, respectively. Oxygen isotope thermometry for the granitoid gives temperatures of 550 ± 25°C to 605 ± 30, 390 ± 15 to 540 ± 25°C, and 481 ± 5 to 675 ± 10°C, for hornblende, biotite, and K-feldspar, respectively, when paired with quartz. The systematic differences among ages according to different techniques used on different minerals are used to reconstruct the cooling history of the granite. The results yield rapid cooling rates of 33.3°C/Ma from 800°C to 550°C, and slow cooling rates of about 15 ± 0.5°C/Ma from 550 to 300°C. Rapid subsolidus cooling between 600°C and 550°C is documented by 40Ar/39Ar ages on amphibole and biotite between 71.4 ± 2.8 and 75.4 ± 2.9 Ma. Younger ages on biotites from two samples (59.5 ± 2.2 and 64.4 ± 2.5) are probably caused by loss of Ar. The reason for this possible Ar loss can be interpreted as slower subsolidus cooling (~375°C) ages. There is an apparent spatial and temporal relationship between the intrusion-cooling of the Beypazar? granitoid and the evolution of the ?zmir–Ankara–Erzincan ocean belonging to the northern Neo-Tethyan ocean domain.  相似文献   

17.
Water pollution is a widespread problem in different areas of the world. Some of these problems originated from point contamination sources and widespread contaminant outlet sources which are observed in every country. The major elements and chemical loads of surface water have been dominated by constituents derived directly or indirectly from human activities and/or industrial practices that have increased additives in the last several decades. The point sources of contamination may result from the direct wastewater discharges to the dam sites, which are considered to be the most commonly encountered water pollution problems. One of these problems is the eutrophication process which usually occurs in the static water mass of lakes and other surface water reservoirs. This process may be caused by the continuous increase of nitrogen and phosphorus contents and decrease of O2 level in water causing an anaerobic condition which may stimulate algae-growth flow in these water bodies, consequently reducing the quality of water. Of course, there are many research methods for determining the various kinds of water pollution. In this research, the hydrochemical parameters were evaluated to estimate the types of pollution sources, the level of pollution, and its environmental impacts on the Tahtal dam reservoir.  相似文献   

18.
19.
Investigations were undertaken into the quality of surface water and groundwater bodies within the Upper Tigris Basin in Turkey to determine their suitability for potable and agricultural use. In the study area, the majority of the groundwater and surface water samples belong to the calcium–magnesium–bicarbonate type (Ca–Mg–HCO3) or magnesium–calcium–bicarbonate type (Mg–Ca–HCO3). Chemical analysis of all water samples shows that the mean cation concentrations (in mg/L) were in the order Ca2+ > Mg2+ > Na+ > K+ and that of anions are in the order \( \text{HCO}_{3}^{ - } \) > \( \text{SO}_{4}^{2 - } \) > Cl? > \( \text{CO}_{3}^{ - } \) for all groundwater and surface water samples. The Mg2+/Ca2+ ratio ranges from 0.21 to 1.30 with most of the values greater than 0.5, indicating that weathering of dolomites is dominant in groundwater. The analysis reveals that all of the samples are neutral to slightly alkaline (pH 7.0–8.7). Groundwater and surface water suitability for drinking usage was evaluated according to the World Health Organization and Turkish Standards (TSE-266) and suggests that most of the samples are suitable for drinking. Various determinants such as sodium absorption ratio, percent sodium (Na %), residual sodium carbonate and soluble sodium percentage revealed that most of the samples are suitable for irrigation. According to MH values, all of the well water samples were suitable for irrigation purposes, but 80 and 81.82% of Zillek springs and surface water samples were unsuitable. As per the PI values, the water samples from the study area are classified as Class I and Class II and are considered to be suitable for irrigation.  相似文献   

20.
In this paper, the Electrical Resistivity Tomography and magnetic methods, including Tilt Angle and Euler Deconvolution, have been used in a comperative manner to determine the lineaments and depths of buried archeological structures. The zero contours of the tilt angle correspond to the boundaries of buried structures and the half distance between ±π/4 rad corresponds to the depth to the top of the structures. Also, in order to estimate the positions and depths of buried structures in the study area, the Euler Deconvolution method was applied to the total magnetic field data. All of the methods have a good correlation about determination of the horizontal locations and depths of the buried structures. The archeological excavations based on the geophysical investigations have demonstrated that the buried structure is an ancient cistern building because of the unearthed pools. Therefore, the interpretations of the geophysical methods and fiction of the paper were made according to the ancient cistern building. With this study, a buried ancient cistern structure was modeled and revealed by the geophysical methods for the first time. Additionally, using of these geophysical techniques in a comparative manner for the archaeogeophysical work will greatly contribute to future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号