首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well known that the slip rate of Kunlun Fault descends at the east segment, but little known about the Awancang Fault and its role in strain partitioning with Kunlun Fault. Whether the sub-strand(Awancang Fault) can rupture simultaneously with Kunlun Fault remains unknown. Based on field investigations, aerial-photo morphological analysis, topographic surveys and 14C dating of alluvial surfaces, we used displaced terrace risers to estimate geological slip rates along the Awancang Fault, which lies on the western margin of the Ruoergai Basin and the eastern edge of the Tibetan plateau, the results indicate that the slip rate is 3mm/a in the middle Holocene, similar to the reduced value of the Kunlun Fault. The fault consists of two segments with strike N50° W, located at distance about 16km, and converged to single stand to the SE direction. Our results demonstrate that the Awancang fault zone is predominantly left-lateral with a small amount of northeast-verging thrust component. The slip rates decrease sharply about 4mm/a from west to east between the intersection zone of the Awancang Fault and Kunlun Fault. Together with our previous trenching results on the Kunlun Fault, the comparison with slip rates at the Kunlun fault zone suggests that the Awancang fault zone has an important role in strain partitioning for east extension of Kunlun Fault in eastern Tibet. At the same time, the 15km long surface rupture zone of the southeast segment was found at the Awancang Fault. By dating the latest faulted geomorphologic surface, the last event may be since the 1766±54 Cal a BP. Through analysis of the trench, there are four paleoearthquake events identified recurring in situ on the Awancang Fault and the latest event is since (850±30)a BP. The slip rate of the Awancang Fault is almost equivalent to the descending value of the eastern part of the east Kunlun Fault, which can well explain the slip rate decreasing of the eastern part of the east Kunlun Fault(the Maqin-Maqu segment)and the characteristics of the structure dynamics of the eastern edge of the Tibet Plateau. The falling slip rate gradient of the eastern Kunlun Fault corresponds to the geometric characteristic. It is the Awancang Fault, the strand of the East Kunlun Fault that accommodates the strain distribution of the eastward extension of the east Kunlun Fault. This study is helpful to seismic hazard assessment and understanding the deformation mechanism in eastern Tibet.  相似文献   

2.
蔡瑶瑶  张军龙 《地震》2018,38(3):58-65
东昆仑断裂带是青藏高原东北部一条重要的活动断裂, 构成了巴颜喀拉块体的北边界。 根据阿尼玛卿山两侧滑动速率和历史地震的差异, 将断裂带分为东西两个部分。 滑动速率由西向东递减, 近百年的历史地震产生的破裂基本覆盖了西部和东部的一部分。 随着巴颜喀拉块体周缘强震的持续发生, 作为块体北边界的东昆仑断裂带的地震空区及地震潜势研究变得更加重要。 近些年通过对东昆仑断裂带不同段的研究得到了较多的滑动速率和古地震序列数据, 为评价断裂带未来百年地震危险性提供了有利条件。 利用NB模型中的对数正态分布方法, 得到了东昆仑断裂带在未来100 a的发震概率, 研究表明, 东部(玛曲段)发震概率相对较高, 需要进一步关注。  相似文献   

3.
李建军  蔡瑶瑶  张军龙 《地震》2019,39(1):20-28
塔藏断裂位于东昆仑断裂带东段,长约170km,与岷山断裂带共同构成巴颜喀拉块体的东北构造边界,中部与岷江断裂、荷叶断裂、虎牙断裂的北延段交会,构成岷山隆起的地貌边界。通过卫星影像解译结合构造地貌调查,确定了断层属于全新世活动断层,并利用断层走向弯曲和活动性、阶区等标志将塔藏断裂分为三段。西段为罗叉段,总体走向NWW,西侧与玛曲断裂形成左行左阶拉分区,东侧在下黄寨村走向顺时针偏转至东北村段。中段为东北村段,总体走向NW,东侧在九寨沟口附近走向逆时针偏转至马家磨段。东段为马家磨段,总体走向NWW,西侧隔荷叶断裂、虎牙断裂的北延段与中段相接。东北村段以岷江断裂斜交点为界可分为南北两个次级段,马家磨段以阶区为界划分为扎如次段、唐寨次段、勿角次段。罗叉段和马家磨段的地震离逝时间较近,东北村段相对较远。断裂带整体呈反"S"形,自西向东滑动速率总体呈减小趋势,大部分水平变形转化为垂向的岷山隆升。结合不同段上的滑动速率,发现东昆仑断裂东段滑动速率呈梯度下降特征与东昆仑断裂带东段断层弯曲的几何特征相对应。  相似文献   

4.
东昆仑断裂东段玛沁-玛曲段几何结构特征   总被引:7,自引:1,他引:6       下载免费PDF全文
文中主要通过ETM,Quickbird,Worldview卫星影像解译,利用断裂带的几何、构造不连续点,对东昆仑断裂带玛沁—玛曲段进行几何分段。自西向东可分为东倾沟段、大武滩段、肯定那段、西科河段、唐地段、玛曲段、墨溪段和罗叉段,前7条断裂羽列排列,唐地段和玛曲段为右阶排列,其余为左阶排列,各阶区之间范围较小,联系紧密。最大的阶区长10km,宽1.3km。除了阶区,断裂的分段标志还有走向的弯曲与断裂的交会。东倾沟段和罗叉段的分段标志主要为断裂走向的弯曲,最大的走向弯曲为东倾沟段,为34°的右阶挤压弯曲。在莫哈汤南侧东昆仑断裂与阿万仓断裂交会,为西科河段的1个分段标志。该段广泛分布的构造地貌和古地震造成的破裂标志表明该段曾经历过多次活动。断裂带从NW向SE呈帚状散开,结合不同段上的滑动速率,发现东昆仑断裂东段滑动速率呈梯度下降与东昆仑断裂带东段帚状散开的几何特征一一对应  相似文献   

5.
On 12 May 2008, the devastating Wenchuan earthquake struck the Longmenshan fault zone, which comprised the eastern margin of the Tibetan Plateau, and this fault zone was predominantly a convergent boundary with a right-lateral strike-slip component. After such a large-magnitude earthquake, it was crucial to analyze the influences of the earthquake on the surrounding faults and the potential seismic activity. In this paper, a complex viscoelastic model of western Sichuan and eastern Tibet regions was constructed including the topography. Based on the findings of co-seismic static slip distribution, we calculated the stress change caused by the Wenchuan earthquake with the post-seismic relaxation into consideration. Our preliminary results indicated that: (1) The tectonic stressing rate was relatively high in Kunlun mountain pass-Jiangcuo, Ganzi-Yushu, Xianshuihe and Zemuhe faults; while in the east Kunlun and Longriba was medium; also the value was less in the Minjiang, Longmenshan, Anninghe and Huya faults. As to the Longmenshan fault, the value was 0.28×10-3 MPa/a to 0.35×10-3 MPa/a, which is coincident with the previous long recurrence interval of Wenchuan earthquake; (2) The Wenchuan earthquake not only caused the Coulomb stress decrease in the source region, but also the stress increase in the two terminals, especially the northeastern segment, which is comparatively consistent with the aftershock distribution. Meanwhile, the high concentration areas of the static slip distribution were corresponding to the Coulomb stress reductions; (3) The Coulomb stress change caused by Wenchuan earthquake showed significant increase on five major faults, which were northwestern segment of Xianshuihe fault, eastern Kunlun fault, Longriba fault, Minjiang fault and Huya fault respectively; also the Coulomb stress on the fault plane of the Yushu earthquake was faintly increased; (4) We defined the recurrence interval as the time needed to accumulate the magnitude of the stress drop, and the recurrence interval of Wenchuan earthquake was estimated about 1 714 a to 2 143 a correspondingly.  相似文献   

6.
基于1999—2016年GPS数据和1980—2010年区域精密水准数据,获取了东昆仑断裂带东部及其邻区主要断裂的滑动速率和区域构造变形特征。结果表示:东昆仑断裂带自西向东的走滑速率衰减非常明显,走滑速率从西大滩—东大滩和阿拉克湖段的约10 mm/a向东到塔藏段衰减至约2 mm/a,速率自西向东每100 km下降梯度约1 mm/a;东昆仑断裂带阿拉克湖段、托索湖段、下大武段和塔藏段均表现出一定的弱挤压特征。跨岷江断裂剖面显示区域挤压变形自西向东由龙日坝断裂至龙门山断裂带有逐渐减弱的特征。区域最大主应变方向为E-NEE向,最大剪切应变高值区位于阿拉克湖段和托索湖段交汇区域以及巴颜喀拉块体的龙日坝断裂中段区域。分析东昆仑断裂带东部及其邻区主要断裂间的构造转换关系认为,岷山地区的隆起变形主要是因为巴颜喀拉块体自西向东的运动受到了华南块体的阻挡,而非东昆仑断裂带向东延展引起的构造转换。  相似文献   

7.
李建军  张军龙  蔡瑶瑶 《地震》2017,37(1):103-111
东昆仑断裂带是青藏高原东北部一条重要的断裂, 具有明显的分段活动性。 现代在不同段发生过多次由东向西迁移的强震, 连接形成千余公里长的地表破裂带。 各段历史地震调查、 古地震、 复发周期和滑动速率等研究表明东昆仑断裂带存在两个地震空区, 其中玛曲段地震空区的危险性大, 最大潜在地震矩震级不小于7.5。  相似文献   

8.
The EW-trending Kunlun Fault System (KFS) is one of the major left-lateral strike-slip faults on the Tibetan Plateau. It forms the northern boundary of the Bayan Har block. Heretofore, no evidence has been provided for the most recent event (MRE) of the ~70-km-long eastern section of the KFS. The studied area is located in the north of the Zoige Basin (northwest Sichuan province) and was recognized by field mapping. Several trenches were excavated and revealed evidence of repeated events in late Holocene. The fault zone is characterized by a distinct 30–60-cm-thick clay fault gouge layer juxtaposing the hanging wall bedrock over unconsolidated late Holocene footwall colluvium and alluvium. The fault zone, hanging wall, and footwall were conformably overlain by undeformed post-MRE deposits. Samples of charred organic material were obtained from the top of the faulted sediments and the base of the unfaulted sediments. Modeling of the age of samples, earthquake yielded a calibrated 2σ radiocarbon age of A.D. 1489 ± 82. Combined with the historical earthquake record, the MRE is dated at A.D. 1488. Based on the over ~50 km-long surface rupture, the magnitude of this event is nearly M w ~7.0. Our data suggests that a ~200-km-long seismic gap could be further divided into the Luocha and Maqu sections. For the last ~1000 years, the Maqu section has been inactive, and hence, it is likely that the end of its seismic cycle is approaching, and that there is a potentially significant seismic hazard in eastern Tibet.  相似文献   

9.
下热尔断裂位于巴颜喀拉块体东北边界变形带即东昆仑断裂带东段与迭部-白龙江断裂2条剪切断裂之间挤压变形带内,在空间上属于“玛曲空段”范围.经野外考察及遥感资料验证,确定下热尔断裂走向为310°,长度约为20km,运动学特征表现为左旋走滑为主兼少量倾滑分量,沿断裂发育大量断错地貌,水平位移主要分布在3.5~5m,而未发现垂向断错地貌;垂直断裂走向开挖2处探槽,揭示断层切穿晚第四纪地层,被地表沼泽相泥炭层覆盖,结合相关地层年龄资料,初步得出平均水平滑动速率约为6.3mm/a.该断裂在几何学与运动学方面与东昆仑断裂带具有较好的一致性,推测两者之间存在一定相关性,属于东昆仑断裂带走滑断裂体系内的一条次级断裂或过渡性断裂.  相似文献   

10.
东昆仑活动断裂是青藏高原东北部一条重要的NWW向边界断裂。 玛曲断裂位于东昆仑断裂带的最东段。 根据野外考察结果认为玛曲断裂全新世以来活动强烈, 主要表现为左旋走滑运动, 并伴有正倾滑运动性质。 断错地貌特征明显, 断裂过玛曲县城以后, 沿黑河南岸穿过若尔盖草地向东, 直至岷山北端求吉附近。 通过两处断错地貌的全站仪器实测和测年资料讨论了玛曲断裂新活动特征和全新世滑动速率, 玛曲断裂全新世早期以来的平均水平滑动速率为6.29~5.71 mm/a, 全新世晚期以来的平均水平滑动速率为4.19~4.03 mm/a。  相似文献   

11.
CHENG Jia  XU Xi-wei 《地震地质》2018,40(1):133-154
Since 1997, several major earthquakes occurred around the Bayan Har block in the Tibetan plateau, providing an opportunity to further understanding the mechanism of intraplate earthquakes. What is the effect of interactions among these events on the earthquake occurrence pattern is an issue to be addressed. In this article, we use the visco-elastic Coulomb stress changes model to calculate the stress interactions among the historical events close to or large than MS7.0 since 1893 in the Bayan Har block. We apply the relationships between the slip rate and stress accumulation rate to transform the Coulomb stress changes into the influenced time. Then we remove such influence time from the occurrence years, and analyze the effects of the earthquake interactions on the clustering patterns of the historical earthquakes in the Bayan Har block. The results show that the major earthquakes in the Bayan Har block are characterized by a quasi-period of about 16 years from 1893 to 1973 and a clustering occurrence time period from 1997 to present following a relatively long quiescence period. The Bayan Har block is still in the active period with high probabilities of major quakes. We calculate the conditional probabilities of the rupture segments that did not rupture since 1893 of the boundary faults of the Bayan Har block in the next 30 years. The following faults or fault sections seem to be of major risk:The Maqin segment and the Maqu fault of the East Kunlun fault zone, the Awanang fault, the Luocha segment of the Tazhong fault, the Moxi segment of the Xianshuihe fault, and the Dangjiang fault. Other Fault segments in the Bayan Har block without seismic events since 1893 probably also have hazard of MS7 earthquakes in the future.  相似文献   

12.
2017年四川九寨沟MS7.0地震是继2008年汶川MS8.0地震和2013年芦山MS7.0地震之后,青藏高原东缘在不到十年的时间内发生的第三个震级MS7.0以上的强震.这次地震发生在东昆仑断裂带东端,作为青藏高原东北缘的一条大型左旋走滑断裂带,东昆仑断裂带与东端其它构造之间的转换关系仍不清楚,因区内地质构造和地形复杂,东昆仑断裂带东端的主要构造仍缺少深入的研究.本文在总结区域地震构造活动特征、历史地震和现代地震基础上,通过东昆仑断裂带东端已有的和最近开展的活动构造定量研究结果,并结合现今GPS变形场资料和2017年九寨沟MS7.0地震灾害特征分析,发现东昆仑断裂带最东段塔藏断裂上的左旋走滑除了一小部分继续向东传播转移到文县断裂带上外,大部分转化为其南侧的龙日坝断裂带北段、岷江断裂和虎牙断裂上的近东西向地壳缩短,这可能是岷山隆起的构造机制,而2017年九寨沟MS7.0地震正是左旋走滑的东昆仑断裂带在东端继续向东扩展的结果.  相似文献   

13.
基于活动块体的基本概念,综合对研究区内活动断裂带空间展布、地震活动性等资料的分析将巴颜喀拉块体东部及邻区划分为巴颜喀拉块体(I)、华南块体(Ⅱ)、川滇块体(Ⅲ)和西秦岭块体(IV)等4个一级块体.利用GPS形变场、地球物理场等资料结合F检验法,将巴颜喀拉块体划分为阿坝(I1)、马尔康(I2)和龙门山(I3)3个次级块体,将西秦岭块体划分为岷县(IV1)和礼县(IV2) 2个次级块体.利用分布在各个块体内部的GPS测站,计算各活动块体及块体边界断裂带的运动变形特征.结果表明:各活动块体的整体运动包括平移和旋转运动;东昆仑断裂带、甘孜—玉树断裂带和鲜水河断裂带的滑动速率明显高于龙门山断裂带的滑动速率;巴颜喀拉块体东部走向北西或北西西的边界断裂表现出左旋拉张的特性;走向北东的边界断裂带,除成县—太白断裂带外,均表现出右旋走滑兼挤压的活动特征.巴颜喀拉块体的东向运动存在自西向东的速度衰减,衰减主要被龙日坝断裂带和岷江断裂带分解吸收,其中龙日坝断裂带的水平右旋分解非常明显,约为~4.8±1.6 mm/a,岷江断裂带的水平分解较弱.龙门山断裂带被马尔康、龙门山和岷县等次级块体分成南、中、北三段,龙门山断裂带中段上的主压应变率要明显小于龙门山断裂带南段上的应变率,其北西侧变形幅度从远离断裂带较大到靠近断裂带逐渐减小,表明其在震前已经积累了较高的应变能,有利于发生破裂滑动.汶川地震后,地表破裂带和余震分布揭示的断裂带运动性质自南西向北东由以逆冲运动为主,逐渐转为逆冲兼走滑的特征可能与龙门山断裂带中段所受主压应力方向自南西向北东的变化有关.马尔康、龙门山和岷县3个次级块体与华南块体之间较低的相对运动速度以及龙门山断裂带低应变率、强闭锁的特征都决定了汶川地震前龙门山断裂带低滑动速率的运动特征.  相似文献   

14.
In order to reveal the deformation and cumulative stress state in Longmenshan and its adjacent faults before Wenchuan earthquake,a 3D viscoelastic finite element model,which includes Longmenshan,Longriba,Minjiang and Huya faults is built in this paper.Using the GPS measurement results of 1999-2004 as the boundary constraints,the deformation and movement of Longmenshan fault zone and its adjacent zones before Wenchuan earthquake are simulated.The conclusions are drawn in this paper as follows:First,velocity component parallel to Longmenshan Fault is mainly absorbed by Longriba Fault and velocity component perpendicular to the Longmenshan Fault is mainly absorbed by itself.Because of the barrier effect of Minjiang and Huya faults on the north section of Longmenshan Fault,the compression rate in the northern part of Longmenshan Fault is lower than that in the southern part.Second,extending from SW to NE direction along Longmenshan Fault,the angle between the main compressive stress and the direction of the fault changes gradually from the nearly vertical to 45 degrees. Compressive stress and shear stress accumulation rate is high in southwest segment of Longmenshan Fault and compressive stress is greater;the stress accumulation rate is low and the compressive stress is close to shear stress in the northeast segment of the fault.This is coincident with the fact that small and medium-sized earthquakes occurred frequently and seismic activity is strong in the southwest of the fault,and that there are only occasional small earthquakes and the seismic activity is weak in the northeast of the fault.It is also coincident with the rupture type of thrust and right-lateral strike-slip of the Wenchuan earthquake and thrust of the Lushan earthquake.Third,assuming that the same type and magnitude of earthquake requires the same amount of stress accumulation,the rupture of Minjiang Fault,the southern segment of Longmenshan Fault and the Huya Fault are mainly of thrust movement and the earthquake recurrence period of the three faults increases gradually.In the northern segment of Longriba Fault and Longmenshan Fault,earthquake rupture is of thrusting and right-lateral strike-slip. The earthquake recurrence period of former is shorter than the latter.In the southern segment of Longriba Fault,earthquake rupture is purely of right-lateral strike-slip,it is possible that the earthquake recurrence period on the fault is the shortest in the study region.  相似文献   

15.
2001年11月14日新疆青海交界东昆仑山8.1级地震构造背景初探   总被引:10,自引:2,他引:10  
2 0 0 1年 11月 14日中国新疆青海交界昆仑山中的 8.1级地震发生在东昆仑断裂的西段。这是一条大型活动块体边界断裂。青藏高原东北部向东逃逸而产生左旋剪切运动使该断裂成为一条青藏高原北部强震密集带。这次地震震中在北西西向东昆仑断裂与北东东向次级断裂的交汇部位 ,破裂表现为自西向东单向扩展的特点  相似文献   

16.
东昆仑断裂带东部塔藏断裂地震地表破裂特征及其构造意义   总被引:12,自引:0,他引:12  
东昆仑断裂带作为青藏高原中东部的巴颜喀拉地块北缘边界断裂带, 研究其强震破裂行为对于认识断裂带活动性及分析川西北地区未来地震危险性具有重要意义。 通过沿断裂发育的大量断错地貌勘查、 典型微地貌DGPS测量及样品年代测定, 认为东昆仑断裂带向东的强震活动性延伸至若尔盖盆地北侧, 即东昆仑断裂带东部塔藏断裂的罗叉段。 此段在卫星影像上呈清晰的灰黑色、 灰黄色线性条带, 地震形变带主要表现为断层陡坎、 坡中谷、 冲沟和阶地位错、 植物异常呈线性分布、 跌水、 断层泉、 断塞塘以及伴随地表错动而出现的滑坡、 垮塌和倒石堆。 这些破裂现象沿先存断层断续分布, 组成长约50 km的“L”形地震形变带。 断裂活动造成冲沟和阶地左行运动, 位错量主要集中在5.5~6.0 m、 18~23 m、 68~75 m和200~220 m范围。 最近地震发生在(340±30)~(500±30)BP间, 宏观震中位于本多村西北5~7 km, 震级为MW7.3左右, 同震位移最大值为6 m, 水平位错量为5.5~6.0 m, 垂直位错量一般为0.2~0.5 m, 其比例为51~101。 对地震形变带中的各种变形遗迹和地震地表破裂特征的研究表明, 塔藏断裂是这次地震的发震构造。 确定了塔藏断裂为全新世活动断层, 近期断层在压剪切作用控制下以左行运动为主, 兼有少量逆冲分量, 同东昆仑断裂带其他段的活动性质相似, 认为东昆仑断裂带延伸至若尔盖盆地北侧, 研究结果支持“大陆逃逸”模型。  相似文献   

17.
大川-双石断裂位于龙门山前山断裂南段,因其在都江堰地区隐伏于岷江河流阶地之下,在一定程度上影响了对龙门山断裂带南段的地震危险性评价和发震能力评估。因此,掌握大川-双石断裂的地下分布特征和活动性,对都江堰城区的避灾规划和重大工程选址意义重大。本项研究在野外地质调查基础上,垂直断裂走向布设浅层地震反射剖面、高密度电阻率剖面和钻孔联合剖面。通过多种方法共同揭示了大川-双石断裂在都江堰地区的精确空间展布位置、近地表构造形态、上断点埋深及断裂活动性。大川-双石断裂在都江堰地区的岷江西岸阶地处隐伏通过,为逆断层,倾向NW,倾角在地表浅层为60°~70°,近地面为20°~30°;且破碎带向地面逐渐变浅变薄,上断点向上延伸至第四系灰褐色黏土层和棕黄色粗砂夹砾石层,埋深约3.5 m。上述研究表明大川-双石断裂在都江堰市区附近具有全新世活动特征。  相似文献   

18.
The East Kunlun active fault zone, which lies in the valley of the Kunlun Mountains above an elevation of 4,000 meters, is an important active fault zone in the Northeast Qinghai-Xizang (Tibet) Plateau. The 1937, the Tosonhu lake M_S7.5 earthquake occurred in the eastern segment of the East Kunlun active fault zone. Four field investigations were launched on this seism in 1963, 1971, 1980, and between 1986 and 1990. However, due to different extents of the investigations, four different conclusions have been gained. Concerning the length aspect of the surface rupture zone of this earthquake, the unanimous consensus is that its eastern end lies in the west side of the main Ridge of the A'nyêmaqên Mountains, but opinions about the western end and the location of the macro-epicenter are different. Based on investigation and comprehensive study, a series of scientific problems like geometric and kinetic characteristics, the length of the rupture zone, the maximum sinistral horizontal displacement and the macro-epicenter were re-evaluated. We believe that the total length of this earthquake's surface deformation zone is at least 240km; the western end of the zone is at the west of Wusuwuwoguole; the maximum sinistral horizontal displacement is 8m to the west of Baerhalasha gully on the east side of Sanchakou; the maximum vertical displacement is 3.5m in the south of Sanchakou and the macro-epicenter is in Sanchakou.  相似文献   

19.
Located at the bend of the northeastern margin of Qinghai-Tibet Plateau, the Haiyuan fault zone is a boundary fault of the stable Alashan block, the stable Ordos block and the active Tibet block, and is the most significant fault zone for the tectonic deformation and strong earthquake activity. In 1920, a M8.5 earthquake occurred in the eastern segment of the fault, causing a surface rupture zone of about 240km. After that, the segment has been in a state of calmness in seismic activity, and no destructive earthquakes of magnitude 6 or above have occurred. Determining the current activity of the Haiyuan fault zone is very important and necessary for the analysis and assessment of its future seismic hazard. To study activity of the Haiyuan fault zone, the degree of fault coupling and the future seismic hazard, domestic and foreign scholars have carried out a lot of research using geology methods and GPS geodetic techniques, but these methods have certain limitations. The geology method is a traditional classical method of fault activity research, but dislocation measurement can only be performed on a local good fault outcrop. There are a limited number of field measurement points and the observation results are not equally limited depending on the sampling location and sampling method. The distribution of GPS stations is sparse, especially in the near-fault area, there is almost no GPS data. Therefore, the spatial resolution of the deformation field features obtained by GPS is low, and there are certain limitations in the kinematic parameter inversion using this method. In this study, we obtain the average InSAR line-of-sight deformation field from the Maomaoshan section to the mid-1920s earthquake rupture segment of the Haiyuan earthquake in the period from 2003 to 2010 based on the PSInSAR technique. The results show that there are obvious differences between the slip rates of the two walls of the fault in the north and the south, which are consistent with the motion characteristics of left-lateral strike-slip in the Haiyuan fault zone. Through the analysis of the high-density cross-fault deformation rate profile of the Laohushan segment, it is determined that the creep length is about 19km. Based on the two-dimensional arctangent model, the fault depth and deep slip rate of different locations in the Haiyuan fault zone are obtained. The results show that the slip rate and the locking depth of the LHS segment change significantly from west to east, and the slip rate decreases from west to east, decreasing from 7.6mm/a in the west to 4.5mm/a in the easternmost. The western part of the LHS segment and the middle part are in a locked state. The western part has a locking depth of 4.2~4.4km, and the middle part has a deeper locking depth of 6.9km, while the eastern part is less than 1km, that is, the shallow surface is creeping, and the creep rate is 4.5~4.8mm/a. On the whole, the 1920 earthquake's rupture segment of the Haiyuan fault zone is in a locked state, and both the slip rate and the locking depth are gradually increased from west to east. The slip rate is increased from 3.2mm/a in the western segment to 5.4mm/a in the eastern segment, and the locking depth is increased from 4.8km in the western segment to 7.5km in the eastern segment. The results of this study refine the understanding of the slip rate and the locking depth of the different segments of the Haiyuan fault zone, and provide reference information for the investigation of the strain accumulation state and regional seismic hazard assessment of different sections of the fault zone.  相似文献   

20.
本文搜集、整理1998—2013年境内外天山及周边地区(包括中国新疆、哈萨克斯坦、吉尔吉斯斯坦等)500余个GPS观测点数据,采用GAMIT/GLOBK软件对其进行解算和平差计算,并利用了弹性块体模型计算区域块体边界断层闭锁深度、块体运动参数和主要活动断层的滑动速率.研究结果表明,东、西昆仑地震带闭锁深度最大(19km),其次为南天山地区,闭锁深度达到17km,闭锁深度最小的为哈萨克斯坦(13km);各块体相对欧亚板块作顺(逆)时针旋转,旋转速率最大(-0.7208±0.0034°/Ma)为塔里木块体,其围绕欧拉极(38.295±0.019°N,95.078±0.077°E)顺时针方向转动,旋转速率最小为天山东段(0.108±0.1210°/Ma),而天山东、西两段无论是在旋转速率上还是在旋转方向上都有显著的区别.西昆仑断裂带的滑动速率(10.2±2.8mm·a-1)最大,南天山西段滑动速率为9.5±1.8mm·a-1,其东段为3.9±1.1mm·a-1;而北天山东段滑动速率(4.7±1.1mm·a-1)高于北天山西段(3.7±0.9mm·a-1);塔里木盆地南缘的阿尔金断裂带平均滑动速率为7.6±1.4mm·a-1,其结果与阿勒泰断裂带滑动速率(7.6±1.6mm·a-1)基本相当;天山断裂带运动方式主要以挤压为主,而阿尔金、昆仑、阿尔泰以及哈萨克斯坦断裂带均是以走滑运动方式为主,除阿勒泰断裂带走滑方式为右旋以外,其余几个断裂带均为左旋运动.最后,利用主要断裂带的滑动速率计算出各地震带的地震矩变化率以及1900年以来地震矩累计变化量,其结果与利用地震目录计算所得到的地震矩进行比较,判定出各地震带上地震矩均衡分布状态,研究结果显示阿尔金、西昆仑、东昆仑和北天山东段断裂带存在较大的地震矩亏损,均具有发生7级以上地震的可能性,南天山东段和哈萨克斯坦断裂带地震矩亏损相对较小,具有孕育6~7级地震的潜能,而天山西段、阿勒泰地震矩呈现出盈余状态,不具在1~3年内有发生强震的可能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号