共查询到20条相似文献,搜索用时 15 毫秒
1.
K. Perner M. Moros J.M. Lloyd A. Kuijpers R.J. Telford J. Harff 《Quaternary Science Reviews》2011,30(19-20):2815-2826
A new centennial scale benthic foraminiferal record of late Holocene climate variability and oceanographic changes off West Greenland (Disko Bugt) highlights substantial subsurface water mass changes (e.g. temperature and salinity) of the West Greenland Current (WGC) over the past 3.6 ka BP. Benthic foraminifera reveal a long-term late Holocene cooling trend, which may be attributed to increased advection of cold, low-salinity water masses derived from the East Greenland Current (EGC). Cooling becomes most pronounced from c. 1.7 ka BP onwards. At this point the calcareous Atlantic benthic foraminiferal fauna decrease significantly and is replaced by an agglutinated Arctic fauna. Superimposed on this cooling trend, centennial scale variability in the WGC reveals a marked cold phase at c. 2.5 ka BP, which may correspond to the 2.7 ka BP cooling-event recorded in marine and terrestrial archives elsewhere in the North Atlantic region. A warm phase recognized at c. 1.8 ka BP is likely to correspond to the ‘Roman Warm Period’ and represents the warmest bottom water conditions. During the time period of the ‘Medieval Climate Anomaly’ we observe only a slight warming of the WGC. A progressively more dominant cold water contribution from the EGC on the WGC is documented by the prominent rise in abundance of agglutinated Arctic water species from 0.9 ka BP onwards. This cooling event culminates at c. 0.3 ka BP and represents the coldest episode of the ‘Little Ice Age’.Gradually increased influence of cold, low-salinity water masses derived from the EGC may be linked to enhanced advection of Polar and Arctic water by the EGC. These changes are possibly associated with a reported shift in the large-scale North Atlantic Oscillation atmospheric circulation pattern towards a more frequent negative North Atlantic Oscillation mode during the late Holocene. 相似文献
2.
This paper presents the results of an investigation into Holocene relative sea-level (RSL) change, isostatic rebound and ice sheet dynamics in Disko Bugt, West Greenland. Data collected from nine isolation basins on Arveprinsen Ejland, east Disko Bugt, show that mean sea level fell continuously from ca. 70 m at 9.9 ka cal. yr BP (8.9 ka 14C yr BP) to reach a minimum of ca. −5 m at 2.8 ka cal. yr BP (2.5 ka 14C yr BP), before rising to the present day. A west–east gradient in isostatic uplift across Disko Bugt is confirmed, with reduced rebound observed in east Disko Bugt. However, RSL differences (up to 20 m at 7.8 ka to 6.8 ka cal. yr BP (7 ka to 6 ka 14C yr BP)) also exist within east Disko Bugt, suggesting a significant north–south component to the area’s isostatic history. The observed magnitude and timing of late Holocene RSL rise is not compatible with regional forebulge collapse. Instead, RSL rise began first in the eastern part of the bay, as might be expected under a scenario of crustal subsidence caused by neoglacial ice sheet readvance. The results of this study demonstrate the potential of isolation basin data for local and regional RSL studies in Greenland, and the importance of avoiding data compilations from areas where the isobase orientation is uncertain. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
3.
Ole Bennike 《Quaternary Research》2008,69(1):72-76
Radiocarbon age determination of a Greenland whale (Balaena mysticetus) vertebra from Melville Bugt in northwestern Greenland yields an age of 9259-8989 cal yr BP. The margin of the Greenland Ice Sheet in Melville Bugt was situated behind its AD 1950-2000 position in the early Holocene, at a similar position to that being reached following rapid retreat in recent years. Such an early deglaciation of areas close to the Greenland Ice Sheet is unusual. This probably reflects the unique glaciological setting resulting from the narrow fringe of ice-free islands and peninsulas and offshore waters with deep areas that characterize this part of Greenland. The timing of Greenland Ice Sheet retreat to its present margin varies significantly around Greenland. 相似文献
4.
Contrasting Pb isotopes of Archaean and Palaeoproterozoic sulphide mineralisation, Disko Bugt, central West Greenland 总被引:2,自引:0,他引:2
H. Stendal 《Mineralium Deposita》1998,33(3):255-265
Sulphide separates from mineralisation in Archaean and Palaeoproterozoic host rocks of the Disko Bugt area, central West
Greenland, have been analysed for trace elements and Pb isotopes. Isotopic compositions of lead from sulphide separates of
Archaean supracrustal rocks show wide variations. Archaean semi-massive sulphides and sulphides separated from felsic metavolcanites
yield an errorchron age of 2821 +77/−82, with a model μ1 value of 7.36; this is comparable to the estimated age of the supracrustal rocks. The two most prominent mineralised sites,
the Andersen and Eqip prospects, have their own unique Pb isotope pattern; the Andersen prospect is considered to represent
the result of an upper crust of Palaeoproterozoic process. The sulphide separates of Palaeoproterozoic epigenetic mineralisation
hosted in shear and fault zones in the supracrustal rocks has a common origin, e.g. linked to a metamorphic peak and/or hydrothermal
alteration. Gold-bearing samples indicate a local origin for associated sulphides; no regional processes seem to be involved
in the formation of the gold occurrences.
Received: 17 March 1997 / Accepted: 8 July 1997 相似文献
5.
Late Holocene environmental change in Disko Bugt, west Greenland: interaction between climate, ocean circulation and Jakobshavn Isbrae 总被引:1,自引:0,他引:1
Foraminiferal assemblages and the sedimentology of two cores (POR20 and POR21) from eastern Disko Bugt, west Greenland, are used to identify environmental changes in the area over the past c. 2200 years. Changes in the sediment flux supplied to the core sites from Jakobshavn Isbrae are used to assess the relative position of the calving margin. An Atlantic water influence as strong as, or slightly stronger than, present prevailed at c. 2200 cal. yr BP. A trend of increasing Atlantic water influence then culminated in peak warm and saline hydrographic conditions c. 1664-474 cal. yr BP encompassing the 'Medieval Warm Period'. This period was marked by a retreat of the calving front of Jakobshavn Isbrae and was followed by a marked cooling in hydrographic conditions relating to an increase in the influence of the East Greenland Current in the West Greenland Current corresponding to the climatic episode the 'Little Ice Age'. A rise in sedimentation rate over this period relates to the well-documented advance of Jakobshavn Isbrae. The record from Disko Bugt shows good agreement with the temperature record from the Greenland ice cores and other climatic and oceanographic reconstructions in the region. 相似文献
6.
Radiocarbon dating of marine shells, including a discussion of apparent age of Recent shells from Norway 总被引:1,自引:0,他引:1
JAN MANGERUD 《Boreas: An International Journal of Quaternary Research》1972,1(2):143-172
General problems in determining and interpreting shell C14 dates are discussed: calculation methods, factors influencing primary activity (apparent age), and determination of contamination. It is concluded that shell dates are reliable when handled carefully. Measurements on ten shells, collected between 1898 and 1923 on the Norwegian coast, gave apparent ages from 340±75 to 550±80 years, indicating that apparent age is not a significant problem in dating of Norwegian shells. 相似文献
7.
Late Weichselian deglacial history of Disko Bugt, West Greenland, and the dynamics of the Jakobshavns Isbrae ice stream 总被引:2,自引:0,他引:2
ANTONY J. LONG DAVID H. ROBERTS 《Boreas: An International Journal of Quaternary Research》2003,32(1):208-226
New relative sea-level (RSL) data from Disko Bugt, a large marine embayment in West Greenland, are used to examine the deglacial history of the Jakobshavns Isbrae ice stream. RSL data show rapid deglaciation after 10.3 ka cal. yr BP. Once deglaciation began, a bedrock high in the west of the bay exerted no discernible influence on the deglacial chronology. Following initial rapid retreat, ice stream recession slowed as it approached the eastern shores of the bay. Seabed elevations increase here and the ice stream terminus lingered for several thousand years before retreating into the narrow bedrock-confined Jakobshavns Isfjord. The seabed topography of Disko Bugt includes several deep channels which probably record the former course of the ice stream. Using a simple water depth/calving velocity relationship it is estimated that the maximum calving velocity on deglaciation was c. 4.8 km a-1 . This is less than the present rate (6–7 km a-1 ), although ice discharge was two to four times that observed today. Initiation of rapid ice stream retreat was probably caused by ice stream thinning and increased surface melting. A critical point in time was the retreat of the ice stream from shallow continental shelf waters ( c. 400 m) into the deep bedrock trough (>800 m) which marks the entrance to Disko Bugt. 相似文献
8.
ÓLAFUR INGÓLFSSON POVL FRICH SVEND FUNDER OLE HUMLUM 《Boreas: An International Journal of Quaternary Research》1990,19(4):297-311
The paper describes studies of glacial deposits and raised beaches on the island of Disko. West Greenland. Two stades in the glacial history are defined, the Godhavn stade, which represents the last major glaciation on Disko, and the Disko stade, which defines a Preboreal readvance. During the Godhavn stade, only eastern and southern Disko were affected by the extended Inland Ice, while glaciation on western and northern Disko was local in character. In connection with the deglaciation, the sea transgressed to the marine limit at c. 9,250-9,000 BP. Immediately before, tentatively culminating around 9,300 BP, a significant readvance of glaciers on eastern Disko occurred. The marine limit rises on a transect from northwest to southeast across Disko from 60 m a.s.l. to 90 m. The paper discusses changes in equilibrium line altitude (ELA) during the deglaciation, and explains the Disko stade readvance in terms of variations in upper-air wind conditions. 相似文献
9.
Ole Bennike 《第四纪科学杂志》1995,10(2):149-155
The macrofossils, lithology and chronology of two lake basins on Disko in central West Greenland have been investigated. Both lakes were isolated from the sea in the mid-Holocene as a result of relative land uplift. A marine-brackish-limnic sequence was recovered from the Qivittut Lake. The marine fauna is unusually diverse, whereas the brackish water fauna consists only of few species. Immediately after isolation the lake passed through a short-lived eutrophic phase, after which stable, mesotrophic conditions were established. From the second lake basin, the Fortunebay Lake, only limnic sediments were recovered. This lake record demonstrates that rather stable conditions have persisted since mid-Holocene times. Both lakes show anomalously high accumulation rates. 相似文献
10.
Relative sea level (RSL) data derived from isolation basins at Innaarsuit, a site on the south shores of the large marine embayment of Disko Bugt, West Greenland, record rapid RSL fall from the marine limit (ca. 108 m) at 10,300-9900 cal yr B.P. to reach the present sea level at 3500 cal yr B.P. Since 2000 cal yr B.P., RSL rose ca. 3 m to the present. When compared with data from elsewhere in Disko Bugt, our results suggest that the embayment was deglaciated later and more quickly than previously thought, at or slightly before 10,300 cal yr B.P. The northern part of Disko Bugt experienced less rebound (ca. 10 m at 6000 cal yr B.P.) compared with areas to the south. Submergence during the late Holocene supports a model of crustal down-warping as a result of renewed ice-sheet growth during the neoglacial. There is little evidence for west to east differences in crustal rebound across the southern shores of Disko Bugt. 相似文献
11.
The Holocene history of the Danube Delta has been studied using 14C analyses of faunal material. The principal phases of development include: (1) initial Letea Caroarman spit, 11,700–9800 yr B.P. in its central part, 8800-5500 yr B.P. in its southern part; (2) Sf. Gheorghe I Delta, 8900-7200 yr B.P.; (3) Sulina Delta, 7200-2000 yr B.P., and (4) Sf. Gheorghe II Delta-Chilia Delta 2000 yr B.P.-present. Other smaller-scale features have also been dated, including secondary deltas (Co?na and Sinoe Deltas) and littoral bars. Age determinations carried out on whole samples were erratic and it was found that individual species had to be separated and dated. In all cases, the older dates were of transported material whereas the younger dates gave the true age of the formation. 相似文献
12.
Feyling-Hanssen, R. W.: The Pleistocene/Holocene boundary in marine deposits from the Oslofjord area. Boreas, Vol. 1, pp. 241–246. Oslo 1st September, 1972.
In marine deposits from the southern Oslofjord area in Norway the boundary between Holocene and Pleistocene is found within a formation characterized by Arctic species, the so-called Yoldia Clay or zone A in the foraminiferal stratigraphy. The fossil assemblage on the Holocene side of the boundary is even poorer than that on the Pleistocene side, which is explained by the rapid Preboreal ice recession. The boundary is not conspicuously reflected in the faunas but still discernible and applicable. 相似文献
In marine deposits from the southern Oslofjord area in Norway the boundary between Holocene and Pleistocene is found within a formation characterized by Arctic species, the so-called Yoldia Clay or zone A in the foraminiferal stratigraphy. The fossil assemblage on the Holocene side of the boundary is even poorer than that on the Pleistocene side, which is explained by the rapid Preboreal ice recession. The boundary is not conspicuously reflected in the faunas but still discernible and applicable. 相似文献
13.
14.
Michael Staubwasser Gideon M. Henderson Brenda L. Hall 《Geochimica et cosmochimica acta》2004,68(1):89-100
The geochemistry of Ba, Ra, Th, and U and the potential of using 226Ra/Ba ratios as an alternative dating method are explored in modern and Holocene marine mollusc shells. Five modern shells of the Antarctic scallop Adamussium colbecki collected from the present day beach and six radiocarbon dated specimens from Holocene beach terraces of the Ross Sea region (Antarctic) between 700 and 6100 calibrated yr BP old have been analysed by mass spectrometry. In clean shells 226Ra concentrations and 226Ra/Ba ratios show a clear decrease with increasing age, suggesting the possibility of 226Ra dating. Limiting factors for such dating are Ba and 226Ra present in surface contaminants, and ingrowth of 226Ra from U present within the shell. Surface contamination is difficult to clean off entirely, but moderate levels of residual contamination can be corrected using 232Th. Sub-samples from the same shell with different proportions of contamination form a mixing line in a 226Ra/Ba-232Th/Ba graph, and the 226Ra/Ba of the pure shell can be derived from the intercept on the 226Ra/Ba axis. Contaminant corrected 226Ra/Ba ratios of late-Holocene 14C-dated samples fall close to that expected from simple 226Ra excess decay from seawater 226Ra/Ba values. 226Ra ingrowth from U incorporated into the shell during the lifetime of the mollusc can be corrected for. However, the unknown timing of post mortem U uptake into the shell makes a correction for 226Ra ingrowth from secondary U difficult to achieve. In the A. colbecki shells, 226Ra ingrowth from such secondary U becomes significant only when ages exceed ∼2500 yr. In younger shells, 226Ra/Ba ratios corrected for surface contamination provide chronological information. If evidence for a constant oceanic relationship between 226Ra and Ba in the ocean can be confirmed for that time scale, the 226Ra/Ba chronometer may enable the reconstruction of variability in sea surface 14C reservoir ages from mollusc shells and allow its use as a paleoceanographic tracer. 相似文献
15.
Hanne H. Christiansen Ole Bennike Jens Bcher Bo Elberling Ole Humlum Bjarne H. Jakobsen 《第四纪科学杂志》2002,17(2):145-160
Terraces of different age in the Zackenberg delta, located at 74°N in northeast Greenland, have provided the opportunity for an interdisciplinary approach to the investigation of Holocene glacial, periglacial, pedological, biological and archaeological conditions that existed during and after delta deposition. The raised Zackenberg delta accumulated mainly during the Holocene Climatic Optimum, starting slightly prior to 9500 cal. yr BP (30 m a.s.l.) and continued until at least 6300 cal. yr BP (0.5 m a.s.l.). Evidence of sea‐level change is based on conventional 14C dates of shells from the marine delta bottomsets, 14C AMS dating of macroscopic plant material from the foresets and of fluvial deposits. Arthropod and plant remains from 7960 cal. yr BP in the delta foresets include the oldest evidence of the arctic hare in Greenland and evidence of a rich herb flora slightly different from the modern flora. Empetrum nigrum and Salix herbacea remains indicate a summer temperature at least as high as today during delta deposition. Post‐depositional nivation activity, dated by luminescence, lichenometry and Schmidt Hammer measurements indicate mainly late Holocene activity, at least since 2900 yr BP, including Little Ice Age (LIA) avalanche activity. Pedological analyses of fossil podsols in the Zackenberg delta, including 14C AMS dating of selected organic rich B‐horizons, show continued podsol development during the Holocene Climatic Optimum and into the subsequent colder period of the late Holocene, until 3000–2400 yr BP. A Neo‐Eskimo house ruin found on the lower part of the delta, presently being eroded by the sea, is dated to AD 1800. It presumably was abandoned prior to AD 1869, and suggests that some of the last Eskimos that lived in northeast Greenland might have occupied the Zackenberg delta. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
16.
This study investigated Holocene and fossil hydrothermal manganese deposits in the Izu-Ogasawara arc. Mineralogically, these deposits comprise 10 Å and 7 Å manganate minerals, and the fossil samples showed higher 10 Å stabilities. Chemical compositions of the Holocene samples are typical of other hydrothermal manganese deposits, including low Fe/Mn ratios, low trace metals, and low rare earth elements. Although the fossil samples generally have similar chemical characteristics, they exhibit significant enrichment in Ni, Cu, Zn, Cd, Ba, REE, Tl, and Pb contents. Furthermore, the chondrite-normalized REE patterns showed more light REE enrichment trends. These chemical characteristics suggest post-depositional uptake of these metals from seawater. U-Th dating of a Holocene hydrothermal manganese deposit from the Kaikata Seamount indicated 8.8 ± 0.94 ka for the uppermost layer and downward growth beneath the seafloor with a growth rate of ca. 2 mm/kyr. This is approximately three orders of magnitude faster than that of hydrogenetic ferromanganese crusts. U-Pb age of a fossil hydrothermal manganese deposit from the Nishi-Jokyo Seamount showed 4.4 ± 1.6 Ma, which was contemporary with basaltic volcanism (5.8 ± 0.3 Ma). Hydrothermal manganese deposits contain high concentrations of high value Mn, but only small amounts of valuable minor metals; their ages constrain the periods of past hydrothermal activity and provide a vector to explore for polymetallic sulfide deposits. 相似文献
17.
Paleoenvironments during Younger Dryas‐Early Holocene retreat of the Greenland Ice Sheet from outer Disko Trough,central west Greenland 下载免费PDF全文
ANNE E. JENNINGS MARIAH E. WALTON COLM Ó COFAIGH AOIBHEANN KILFEATHER JOHN T. ANDREWS JOSEPH D. ORTIZ ANNE DE VERNAL JULIAN A. DOWDESWELL 《第四纪科学杂志》2014,29(1):27-40
18.
A palynological and sedimentological study has been carried out on the Cretaceous fluvial and deltaic Atane Formation of West Greenland. Two localities, Skansen and Igdlunguaq on the southern coast of Disko island, have been studied. The sediments are divided into two genetic facies associations interpreted as representing deposition in fluvial channels and on a floodplain. The facies indicate that most of the sediments on the floodplain accumulated in swamps or shallow lakes, whereas abundant spores and pollen indicate the presence of vegetated land nearby. The palynomorph assemblages recovered consist of 72 species of spores and pollen grains of bryophytes, pteridophytes, gymnosperms and angiosperms. The palynomorphs from Skansen and most of those from Igdlunguaq indicate a maximum age-range from late Albian to Cenomanian for the successions sampled, although a mid Cenomanian age seems most likely. The highest horizon examined at Igdlunguaq may, however, be late Cenomanian or Turonian in age. The assemblages compare well with palynofloras from North America and Northwest Europe. 相似文献
19.
SOFIA RIBEIRO MATTHIAS MOROS MARIANNE ELLEGAARD ANTOON KUIJPERS 《Boreas: An International Journal of Quaternary Research》2012,41(1):68-83
Ribeiro, S., Moros, M., Ellegaard, M. & Kuijpers, A. 2012 (January): Climate variability in West Greenland during the past 1500 years: evidence from a high‐resolution marine palynological record from Disko Bay. Boreas, Vol. 41, pp. 68–83. 10.1111/j.1502‐3885.2011.00216.x. ISSN 0300‐9483. Here we document late‐Holocene climate variability in West Greenland as inferred from a marine sediment record from the outer Disko Bay. Organic‐walled dinoflagellate cysts and other palynomorphs were used to reconstruct environmental changes in the area through the last c. 1500 years at 30–40 years resolution. Sea ice cover and primary productivity were identified as the two main factors driving dinoflagellate cyst community changes through time. Our data provide evidence for an opposite climate trend in West Greenland relative to the NE Atlantic region from c. AD 500 to 1050. For the same period, sea‐surface temperatures in Disko Bay are out‐of‐phase with Greenland ice‐core reconstructed temperatures and marine proxy data from South and East Greenland. This is probably governed by an NAO‐type pattern, which results in warmer sea‐surface conditions with less extensive sea ice in the area for the later part of the Dark Ages cold period (c. AD 500 to 750) and cooler conditions with extensive sea ice inferred for the first part of the Medieval Climate Anomaly (MCA) (c. AD 750 to 1050). After c. AD 1050, the marine climate in Disko Bay becomes in‐phase with trends described for the NE Atlantic, reflected in the warmer interval for the remainder of the MCA (c. AD 1050–1250), followed by cooling towards the onset of the Little Ice Age at c. AD 1400. The inferred scenario of climate deterioration and extensive sea ice is concomitant with the collapse of the Norse Western Settlement in Greenland at c. AD 1350. 相似文献