首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a mineralogical assessment of near-Earth Asteroid, (1036) Ganymed, using data obtained May 18, 2006 UT combined with 24 Color Asteroid Survey data to cover the spectral interval of 0.3-2.45 μm. Results of the analysis indicate (1036) Ganymed is an S (VI) asteroid with a surface silicate assemblage consisting primarily of orthopyroxene, (Fs23(±5)Wo3(±3)), consistent with calculated band centers and band area ratios (BAR). (1036) Ganymed appears to be once part of a large mesosiderite containing howardite, eucrite, and diogenite (HED) pyroxenes mixed with metal that was broken apart and dispersed. The calculated composition of the average pyroxenes in the surface material of (1036) Ganymed is consistent with mesosiderite pyroxenes, in particular the diogenites. A second possibility could be (1036) Ganymed is not yet represented in the meteorite collection. Our investigation has confirmed Ganymed is not a parent body of the ordinary chondrites and is not genetically related to (433) Eros.  相似文献   

2.
The Very Large Telescope Interferometer (VLTI) of the European Southern Observatory (ESO) can be used to obtain direct determination of the sizes and the albedos of asteroids. We present results of the first attempt to carry out interferometric observations of asteroids with the Mid Infrared Interferometric Instrument (MIDI) at the VLTI. Our target was 1459 Magnya. This is the only V-type asteroid known to exist in the outer main-belt, and its IRAS-albedo turns out to be rather low for an object of this taxonomic class. Interferometric fringes were not detected, very likely due to the fact that the flux emitted by the asteroid was lower than expected and below the MIDI threshold for fringe detection. However, by fitting the Standard Thermal Model to the N-band infrared flux measured by MIDI in photometric mode and to the visible absolute magnitude, obtained from quasi-simultaneous B- and V-band photometric observations, we have derived a geometric visible albedo of 0.37±0.06 and an effective diameter of 17±1 km. This new estimate of the albedo differs from that previously obtained by IRAS and is more consistent with the V-type taxonomic classification of 1459 Magnya.  相似文献   

3.
The apparent strength of absorptions due to H2O near 1.9 and 3 μm in reflectance spectra is strongly affected by sample albedo. This study uses experimental and analytical approaches to quantify the effects of albedo on estimating the water content of hydrated minerals using various band parameters. We compare spectral band parameters for a series of low-albedo physical and numerical mixtures to measured water contents. Physical experiments consist of montmorillonite, clinoptilolite, and palagonite mixed with lesser amounts of carbon black and ilmenite, whereas numerical mixtures are composed of these host minerals mixed with a material of constant, low albedo. We find the effective single-particle absorption-thickness parameter provides the best correlation to water content, independent of composition and albedo, when derived from continuum-removed single scattering albedo spectra. Uncertainties in estimated water content are on the order of ±1 wt% using this method. The normalized optical path length parameter provides the best correlation to water content when using reflectance spectra, yielding estimates within ±1.6 wt% H2O. The accuracy of these models is related to the physical nature of the darkening material. Scattering and absorption efficiencies are easier to model for intimate mixtures containing relatively large, dark grains than mixtures dominated by coatings of a fine-grained, strongly absorbing material. This suggests the physical properties that give rise to the albedo of a material are an important factor for accurate estimates of absolute water content.  相似文献   

4.
Bottke et al. [Bottke, W.F., Vokrouhlicky, D., Nesvorný, D., 2007. Nature 449, 48–53] linked the catastrophic formation of Baptistina Asteroid Family (BAF) to the K/T impact event. This linkage was based on dynamical and compositional evidence, which suggested the impactor had a composition similar to CM2 carbonaceous chondrites. However, our recent study [Reddy, V., Emery, J.P., Gaffey, M.J., Bottke, W.F., Cramer, A., Kelley, M.S., 2009. Meteorit. Planet. Sci. 44, 1917–1927] suggests that the composition of (298) Baptistina is similar to LL-type ordinary chondrites rather than CM2 carbonaceous chondrites. This rules out any possibility of it being related to the source of the K/T impactor, if the impactor was of CM-type composition. Mineralogical study of asteroids in the vicinity of BAF has revealed a plethora of compositional types suggesting a complex formation and evolution environment. A detailed compositional analysis of 16 asteroids suggests several distinct surface assemblages including ordinary chondrites (Gaffey SIV subtype), primitive achondrites (Gaffey SIII subtype), basaltic achondrites (Gaffey SVII subtype and V-type), and a carbonaceous chondrite. Based on our mineralogical analysis we conclude that (298) Baptistina is similar to ordinary chondrites (LL-type) based on olivine and pyroxene mineralogy and moderate albedo. S-type and V-type in and around the vicinity of BAF we characterized show mineralogical affinity to (8) Flora and (4) Vesta and could be part of their families. Smaller BAF asteroids with lower SNR spectra showing only a ‘single’ band are compositionally similar to (298) Baptistina and L/LL chondrites. It is unclear at this point why the silicate absorption bands in spectra of asteroids with formal family definition seem suppressed relative to background population, despite having similar mineralogy.  相似文献   

5.
We have made near-IR spectral observations of the very young (5.75 Myr) S-type asteroid 832 Karin, well sampled in rotational phase over its 18.35-h period. We find no significant variations in its reflectance spectrum. Karin, the brightest member of the Karin cluster (a sub-family of the larger, older Koronis dynamical family), was shown to be exceptionally young by Nesvorný et al. [Nesvorný, D., Bottke, W.F., Dones, L., Levison, H., 2002. Nature 417, 720-722], using backward numerical integration of orbital elements of cluster members. Their precise dating of the collisional breakup gives us an opportunity, for the first time and without age-dating of physical samples, to monitor time-evolution of processes, like space weathering, that operate on timescales of ∼1-10 Myr. Sasaki et al. [Sasaki, T., Sasaki, S., Watanabe, J., Sekiguchi, T., Yoshida, F., Kawakita, H., Fuse, T., Takato, N., Dermawan, B., Ito, T., 2004. Astrophys. J. 615, L161-L164; Sasaki, T., Sasaki, S., Watanabe, J., Sekiguchi, T., Yoshida, F., Ito., T., Kawakita, H., Fuse, T., Takato, N., Dermawan, B., 2005. Lunar Planet. Sci. XXXVI. Abstract #1590] had made similar measurements of Karin, although more sparsely sampled than ours, and claimed dramatically different colors as a function of rotational phase. Sasaki et al. interpreted their data to be showing the reddish, space-weathered exterior surface of the precursor asteroid, as well as an interior face, which had not had time to become space-weathered. On five nights over 2006 January 7-14 UT, we observed Karin with the SpeX (0.8-2.5 μm) spectrometer of the IRTF. We analyze data in 30° intervals of rotational longitude, some of which we sampled on two different nights. The spectra are consistent with little or no spectral variation as the asteroid rotates; certainly there are no changes as large as previously reported. The previous observations were probably spurious. Our average spectrum resembles the “blue” spectrum of Sasaki et al., which they interpreted to be the “fresh” surface. Karin is not quite as red as typical S-types, yet has rather shallow absorption bands. We surmise that the space-weathering process affecting Karin has had time to reduce spectral contrast, but has not operated long enough to redden its spectrum—an intermediate case of space weathering, which has gone to completion for most main-belt asteroids. This work sets an important constraint on the timescale for the ubiquitous space-weathering process affecting S-types, namely that its effects are evident, but not yet complete, at ∼6 Myr.  相似文献   

6.
The first verifiable near-infrared absorption features in the ∼0.9-μm spectral region are reported for Asteroids 16 Psyche, 69 Hesperia, 110 Lydia, 125 Liberatrix, 201 Penelope, and 216 Kleopatra. These weak features (∼1-3%) are attributed to orthopyroxenes present on the surfaces of these asteroids. 16 Psyche and 125 Liberatrix have full rotational coverage while 69 Hesperia, 110 Lydia, 201 Penelope, and 216 Kleopatra have ∼75% rotational coverage. Qualitative ∼2-μm absorption features are present, but are very weak (<1%). Absorption band positions suggest relatively low abundances of calcium and iron in the pyroxenes. This indicates relatively reducing redox conditions for these asteroids, their parent bodies, and the nebular regions in which they formed. Four potential interpretations for these asteroids include: (1) they are exposed metallic cores or core fragments of differentiated parent bodies with residual orthopyroxene mantle material, (2) they are the result of a smelting-like reaction that converts olivine to pyroxene and metallic iron in the presence of carbon at high temperatures, (3) they are analogs to the primitive metal-rich Bencubbinite meteorites, or (4) they represent metallic surfaces which have accumulated silicate debris from external sources. Of the two original interpretations for the M-asteroids, the enstatite chondrite interpretation (Chapman and Salisbury, 1973, Icarus 19, 507-522; Gaffey and McCord, 1979, Mineralogical and petrological characterizations of asteroids. In: Gehrels T. (Ed.), Asteroids. Univ. of Arizona Press, Tucson, pp. 688-723) can be eliminated for these asteroids because the pyroxene in enstatite chondrites is iron-free and does not exhibit such absorption features. The iron meteorite interpretation remains valid, but with modification. For M-Asteroids 16 Psyche and 216 Kleopatra, these spectral results combined with previous determinations of high radar albedos indicate that these bodies are most probably exposed core fragments of differentiated bodies. M-Asteroids 69 Hesperia, 110 Lydia, 125 Liberatrix, and 201 Penelope exhibit similar spectral features consistent with exposed core fragments, but radar observations would be needed to confirm a high metal abundance. Observations of M-Asteroids 136 Austria and 325 Heidelberga suggest the absence of absorption features in the ∼0.4- to ∼2.5-μm region within the scatter of the data. Verification of the presence or absence of features across the surfaces of these two asteroids requires full rotational coverage. The interpretations for these “featureless” M-asteroids are not well-constrained, but remain consistent with the iron meteorite and enstatite chondrite interpretations.  相似文献   

7.
Lucy F. Lim  Joshua P. Emery 《Icarus》2011,213(2):510-523
We present the thermal infrared (5-35 μm) spectrum of 956 Elisa as measured by the Spitzer Infrared Spectrograph (“IRS”; Houck, J.R. et al. [2004]. Astrophys. J. Suppl. 154, 18-24) together with new groundbased lightcurve data and near-IR spectra. From the visible lightcurve photometry, we determine a rotation period of 16.494 ± 0.001 h, identify the rotational phase of the Spitzer observations, and estimate the visible absolute magnitude (HV) at that rotational phase to be 12.58 ± 0.04. From radiometric analysis of the thermal flux spectrum, we find that at the time of observation 956 Elisa had a projected radius of 5.3 ± 0.4 km with a visible albedo pV = 0.142 ± 0.022, significantly lower than that of the prototype V-type asteroid, 4 Vesta. (This corresponds to a radius of 5.2 ± 0.4 km at lightcurve mean.) Analysis with the standard thermal model (STM) results in a sub-solar temperature of 292.3 ±  2.8 K and beaming parameter η = 1.16 ± 0.05. Thermophysical modeling places a lower limit of on the thermal inertia of the asteroid’s surface layer (if the surface is very smooth) but more likely values fall between 30 and depending on the sense of rotation.The emissivity spectrum, calculated by dividing the measured thermal flux spectrum by the modeled thermal continuum, exhibits mineralogically interpretable spectral features within the 9-12 μm reststrahlen band, the 15-16.5 μm Si-O-Si stretching region, and the 16-25 μm reststrahlen region that are consistent with pyroxene of diogenitic composition: extant diogenitic pyroxenes fall within the narrow compositional range Wo2±1En74±2Fs24±1. Spectral deconvolution of the 9-12 μm reststrahlen features indicates that up to ≈20% olivine may also be present, suggesting an olivine-diogenite-like mineralogy. The mid-IR spectrum is inconsistent with non-cumulate eucrite as the major component on the surface of 956 Elisa, although cumulate eucrite material may be present at abundances lower than that of the diogenite component.Analysis of new near-IR spectra of 956 Elisa with the Modified Gaussian Model (MGM; Sunshine, J.M., Pieters, C.M., Pratt, S.F. [1990]. J. Geophys. Res. 95 (May), 6955-6966) results in two pyroxene compositions: 75% magnesian low-Ca pyroxene and 25% high-Ca pyroxene. High-Ca pyroxene is not evident in the mid-IR data, but may belong to a component that is underrepresented in the mid-IR spectrum either because of its spatial distribution on the asteroid or because of its particle size. High-Ca pyroxenes that occur as exsolution lamellae may also be more evident spectrally in the NIR than in the mid-IR. In any case, we find that the mid-IR spectrum of 956 Elisa is dominated by emission from material of diogenite-like composition, which has very rarely been observed among asteroids.  相似文献   

8.
We report the results of the Cornell Mid-IR Asteroid Spectroscopy (MIDAS) survey, a program of ground-based observations designed to characterize the 8-13 μm spectral properties of a statistically significant sample of asteroids from a wide variety of visible to near-IR spectral classes. MIDAS is conducted at Palomar Observatory using the Spectrocam-10 (SC-10) spectrograph on the 200-in Hale telescope. We have measured the mid-infrared spectra of twenty-nine asteroids and have derived temperature estimates from our data that are largely consistent with the predictions of the standard thermal model. We have also generated relative emissivity spectra for the target asteroids. On only one asteroid, 1 Ceres, have we found emissivity features with spectral contrast greater than 5%. Our spectrum of 4 Vesta suggests emissivity variation at the 2-3% level. Published spectra of several of the small number of asteroids observed with ISO (six of which are also included in our survey), which appeared to exhibit much stronger emissivity features, are difficult to reconcile with our measurements. Laboratory work on mineral and meteorite samples has shown that the contrast of mid-IR spectral features is greatly reduced at fine grain sizes. Moreover, the NEAR mission found that 433 Eros is covered by a relatively thick fine-grained regolith. If small bodies in general possess such regoliths, their mid-IR spectral features may be quite subtle. This may explain the evident absence of strong emissivity variation in the majority of the MIDAS spectra.  相似文献   

9.
We observed near-Earth asteroid (NEA) 2100 Ra-Shalom over a six-year period, obtaining rotationally resolved spectra in the visible, near-infrared, thermal-infrared, and radar wavelengths. We find that Ra-Shalom has an effective diameter of Deff=2.3±0.2 km, rotation period P=19.793±0.001 h, visual albedo pv=0.13±0.03, radar albedo , and polarization ratio μc=0.25±0.04. We used our radar observations to generate a three-dimensional shape model which shows several structural features of interest. Based on our thermal observations, Ra-Shalom has a high thermal inertia of ∼103 J m−2 s−0.5 K−1, consistent with a coarse or rocky surface and the inferences of others [Harris, A.W., Davies, J.K., Green, S.F., 1998. Icarus 135, 441-450; Delbo, M., Harris, A.W., Binzel, R.P., Pravec, P., Davies, J.K., 2003. Icarus 166, 116-130]. Our spectral data indicate that Ra-Shalom is a K-class asteroid and we find excellent agreement between our spectra and laboratory spectra of the CV3 meteorite Grosnaja. Our spectra show rotation-dependent variations consistent with global variations in grain size. Our radar observations show rotation-dependent variations in radar albedo consistent with global variations in the thickness of a relatively thin regolith.  相似文献   

10.
We observed near-Earth Asteroid (NEA) 2002 CE26 in August and September 2004 using the Arecibo S-band (2380-MHz, 12.6-cm) radar and NASA's Infrared Telescope Facility (IRTF). Shape models obtained based on inversion of our delay-Doppler images show the asteroid to be 3.5±0.4 km in diameter and spheroidal; our corresponding nominal estimates of its visual and radar albedos are 0.07 and 0.24, respectively. Our IRTF spectrum shows the asteroid to be C-class with no evidence of hydration. Thermal models from the IRTF data provide a size and visual albedo consistent with the radar-derived estimate. We estimate the spin-pole to be within a few tens of degrees of λ=317°, β=−20°. Our radar observations reveal a secondary approximately 0.3 km in diameter, giving this binary one of the largest size differentials of any known NEA. The secondary is in a near-circular orbit with period 15.6±0.1 h and a semi-major axis of 4.7±0.2 km. Estimates of the binary orbital pole and secondary rotation rate are consistent with the secondary being in a spin-locked equatorial orbit. The orbit corresponds to a primary mass of M=1.95±0.25×1013 kg, leading to a primary bulk density of , one of the lowest values yet measured for a main-belt or near-Earth asteroid.  相似文献   

11.
We present a mineralogical assessment of 12 Maria family asteroids, using near-infrared spectral data obtained over the years 2000-2009 combined with visible spectral data (when available) to cover the spectral interval of 0.4-2.5 μm. Our analysis indicates the Maria asteroid family, which is located adjacent to the chaotic region of the 3:1 Kirkwood Gap, appears to be a true genetic family composed of assemblages analogous to mesosiderite-type meteorites. Dynamical models by Farinella et al. (Farinella, P., Gunczi, R., Froeschlé, Ch., Froeschlé, C., [1993]. Icarus 101, 174-187) predict this region should supply meteoroids into Earth-crossing orbits. Thus, the Maria family is a plausible source of some or all of the mesosiderites in our meteorite collections. These individual asteroids were most likely once part of a larger parent object that was broken apart and dispersed. One of the Maria dynamical family members investigated, ((695) Bella), was found to be unrelated to the genetic Maria family members. The parameters of (695) Bella indicate an H-chondrite assemblage, and that Bella may be a sister or daughter of Asteroid (6) Hebe.  相似文献   

12.
We present observational evidence that carbonates and iron-rich clays are present on the surface of Ceres. These components are also present in CI chondrites and provide a means of explaining the unusual spectrum of this object as well as providing potential insight into its evolution.  相似文献   

13.
J.P. Emery  D.P. Cruikshank 《Icarus》2006,182(2):496-512
We present thermal emission spectra (5.2-38 μm) of the Trojan asteroids 624 Hektor, 911 Agamemnon, and 1172 Aneas. The observations used the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. Emissivity spectra are created by dividing the measured Spectral Energy Distribution (SED) by a model of the thermal continuum. We employ the Standard Thermal Model (STM), allowing physical parameters (e.g., radius and albedo) to vary in order to find the best thermal continuum fit to the SED. The best-fit effective radius (R) and visible geometric albedo (pv) for Hektor (R=110.0±7.3, ) and Aneas (R=69.1±5.1, ) agree very well with previous estimates, and for Agamemnon (R=71.5±5.2, ) we find slightly a smaller size and higher albedo than previously derived. Other thermal models (e.g., thermophysical) result in estimates of R and pv that vary a few percent from the STM, but the resulting emissivity spectra are identical. The emissivity spectra of all three asteroids display an emissivity plateau near 10-μm and another broader rise from ∼18 to 28 μm. We interpret these as indications of fine-grained silicates on the surfaces of these asteroids. The emissivity spectra more closely resemble emission spectra from cometary comae than those from solid surfaces and measured in the laboratory for powdered meteorites and regolith analogs. We hypothesize that the coma-like emission from the solid surfaces of trojans may be due to small silicate grains being imbedded in a relatively transparent matrix, or to a very under-dense (fairy-castle) surface structure. These hypotheses need to be tested by further laboratory and theoretical scattering work as well as continued thermal emission observations of asteroids.  相似文献   

14.
The known close approach of Asteroid (99942) Apophis in April 2029 provides the opportunity for the case study of a potentially hazardous asteroid in advance of its encounter. The visible to near-infrared (0.55 to 2.45 μm) reflectance spectrum of Apophis is compared and modeled with respect to the spectral and mineralogical characteristics of likely meteorite analogs. Apophis is found to be an Sq-class asteroid that most closely resembles LL ordinary chondrite meteorites in terms of spectral characteristics and interpreted olivine and pyroxene abundances, although we cannot rule out some degree of partial melting. A meteorite analog allows some estimates and conjectures of Apophis' possible range of physical properties such as the grain density and micro-porosity of its constituent material. Composition and size similarities of Apophis with (25143) Itokawa suggest a total porosity of 40% as a “current best guess” for Apophis. Applying these parameters to Apophis yields a mass estimate of 2×1010 kg with a corresponding energy estimate of 375 Mt for its potential hazard. Substantial unknowns, most notably the total porosity, allow uncertainties in these mass and energy estimates to be as large as factors of two or three.  相似文献   

15.
In order to gain further insight into their surface compositions and relationships with meteorites, we have obtained spectra for 17 C and X complex asteroids using NASA’s Infrared Telescope Facility and SpeX infrared spectrometer. We augment these spectra with data in the visible region taken from the on-line databases. Only one of the 17 asteroids showed the three features usually associated with water, the UV slope, a 0.7 μm feature and a 3 μm feature, while five show no evidence for water and 11 had one or two of these features. According to DeMeo et al. (2009), whose asteroid classification scheme we use here, 88% of the variance in asteroid spectra is explained by continuum slope so that asteroids can also be characterized by the slopes of their continua. We thus plot the slope of the continuum between 1.8 and 2.5 μm against slope between 1.0 and 1.75 μm, the break at ∼1.8 μm chosen since phyllosilicates show numerous water-related features beyond this wavelength. On such plots, the C complex fields match those of phyllosilicates kaolinite and montmorillonite that have been heated to about 700 °C, while the X complex fields match the fields for phyllosilicates montmorillonite and serpentine that have been similarly heated. We thus suggest that the surface of the C complex asteroids consist of decomposition products of kaolinite or montmorillonite while for the X complex we suggest that surfaces consist of decomposition products of montmorillonite or serpentine. On the basis of overlapping in fields on the continuum plots we suggest that the CI chondrites are linked with the Cgh asteroids, individual CV and CR chondrites are linked with Xc asteroids, a CK chondrite is linked with the Ch or Cgh asteroids, a number of unusual CI/CM meteorites are linked with C asteroids, and the CM chondrites are linked with the Xk asteroids. The associations are in reasonable agreement with chondrite mineralogy and albedo data.  相似文献   

16.
An automatic procedure has been implemented on the original MGM approach (Sunshine et al., 1990) in order to deal with an a priori unknown mafic mineralogy observed in the visible-near infrared by reflectance spectroscopy in the case of laboratory or natural rock spectra. We consider all the mixture possibilities involving orthopyroxene, clinopyroxene and olivine, and use accordingly for each configuration different numbers of Gaussians, depending on the potential complexity of the mixture. A key issue is to initialize the MGM procedure with a proper setting for the Gaussians parameters. An automatic analysis of the shape of the spectrum is first performed. The continuum is handled with a second order polynomial adjusted on the local maxima along the spectrum and Gaussians parameters initial settings are made on the basis of laboratory results available in the literature in the case of simple mixtures of mafic minerals. The returned MGM solutions are then assessed on spectroscopic grounds and either validated or discarded, on the basis of a mineralogical sorting.The results presented in this paper are a first quantitative step to characterize both modal and chemical compositions of pyroxenes and olivines. A demonstration of the methodology on specific examples of binary and ternary olivine-pyroxenes mixtures has been made, which shows that the different non-linear effects which affect the Gaussian parameters (center and strength) can be successfully handled. Of note is the fact that the band center positions associated with the different mafic minerals are not set here in the inverse problem, and thus the MGM outputs are truly informative of the chemical composition of pyroxenes and olivines. With the consideration of some limits on the detection thresholds, these results are quite promising for increasing the operational use of the Modified Gaussian Model with large hyperspectral data sets in view of establishing detailed mineralogical mappings of magmatic units.  相似文献   

17.
A.S. Rivkin  L.A. McFadden  M. Sykes 《Icarus》2006,180(2):464-472
We present new infrared (2-4 μm) spectroscopic observations of Vesta obtained in 2001, 2003, and 2004. Together with previously published work, these present a picture of how Vesta's spectrum changes with sub-Earth latitude and longitude. Vesta's albedo and 2-μm band vary regularly with its rotational phase. While establishing the continuum level for Vesta in the 3-μm region is not straightforward, Vesta appears to have a spectrum consistent with the HED meteorites and not requiring a 3-μm water of hydration band. We cannot formally rule out a shallow (∼1%) band, however. We place limits on the extent to which solar-wind implantation and contamination by CM-like impactors has changed the surface spectrum of Vesta.  相似文献   

18.
The Keck Observatory's adaptive optics (AO) system has been used to observe Asteroid 4 Vesta during its 2003 closest approach to Earth. Broadband K- and L-band images, centered at 2.1 and 3.6 μm, respectively, are presented here. The sharpness of the images was improved by applying a deconvolution algorithm, MISTRAL, to the images. The K- and L-band images at spatial resolutions of 53 km (0.055) and 88 km (0.085), respectively, display albedo features on the surface of the asteroid that can also be seen in the HST images (673 nm) presented by Thomas et al. [1997. Impact excavation on Asteroid 4 Vesta: Hubble Space Telescope results. Science 277, 1492-1495] and Binzel et al. [1997. Geologic mapping of Vesta from 1994 Hubble Space Telescope images. Icarus 128, 95-103] at the same latitudes and longitudes. While we cannot determine the morphology of these features, we can speculate that some of the albedo features may be impact craters filled with dark material. Spectra, centered at 1.65 and 2.1 μm, were also obtained. Spectra were corrected for the solar flux and are similar to those published by Gaffey [1997. Surface lithologic heterogeneity of Asteroid 4 Vesta. Icarus 127, 130-157], along the same wavelength range.  相似文献   

19.
High-resolution (0.34 nm) reflectance spectra of a suite of terrestrial ortho- and clinopyroxenes were characterized in the 506-nm region. This region exhibits absorption bands attributed to spin-forbidden transitions in Fe2+ located in the M2, and possibly M1, crystallographic site(s). The most intense absorption bands (up to 3.8% deep in <45 μm fractions) are present in low Ca-content orthopyroxene spectra. This region exhibits two (spectral Group I) or more (spectral Group II) absorption bands in the 500-515 nm interval. Group I spectra are associated with the lowest Ca-content samples. For orthopyroxenes, the number of constituent absorption bands and band depths vary as a function of Ca content; increasing Ca content results the appearance of more than two absorption bands and a general reduction in band depths, offsetting an expected increase in band depth with increasing Fe2+ content; band depths may also be reduced due to the long wavelength wing of ultraviolet region Fe-O charge transfer absorptions. Band depths and shapes in this region are also a function of grain size, with the strongest bands appearing for larger grain sizes - in the 90-250 μm range. The number and position of constituent absorption bands can be used to constrain factors such as cooling rates, as expressed in the formation of Guinier-Preston zones versus coarser-grained augite exsolution lamellae. Band depths in the spectra of fine-grained (<45 μm) clinopyroxenes do not exceed 1% and are generally lowest for spectral type A clinopyroxenes, where most of the Fe2+ is present in the M1 crystallographic site. The appearance of the 506 nm band in the spectra of pyroxene-bearing asteroids can be used to constrain pyroxene composition and structure. The results of this study suggest that detailed analysis of absorption features in the 506 nm region is a powerful tool for determining the composition and structure of pyroxenes. The spectral resolution of the VIR-MS spectrometer aboard the Dawn spacecraft - which will examine Asteroid 4 Vesta, a body possessing surficial pyroxenes - will be sufficient to provide some constraints on pyroxene composition.  相似文献   

20.
Near-Earth Asteroid (29075) 1950 DA may closely encounter Earth in 2880. The probability of Earth impact may be as high as 1/300, but the outcome of the encounter depends critically on the physical properties of the asteroid [Giorgini et al., 2002. Science 196, 132-136]. We have used Arecibo and Goldstone radar data and optical lightcurves to estimate the shape, spin state, and surface structure of 1950 DA. The data allow two distinct models. One rotates prograde and is roughly spheroidal with mean diameter 1.16±0.12 km. The other rotates retrograde and is oblate and about 30% larger. Both models suggest a nickel-iron or enstatite chondritic composition. Ground-based observations should be able to determine which model is correct within the next several decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号