首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 401 毫秒
1.
Abstract– The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and experimental cratering processes in geological materials. MEMIN is interested in understanding how porosity and pore space saturation influence the cratering process. Here, we present results of a series of impact experiments into porous wet and dry sandstone targets. Steel, iron meteorite, and aluminum projectiles ranging in size from 2.5 to 12 mm were accelerated to velocities of 2.5–7.8 km s?1, yielding craters with diameters between 3.9 and 40 cm. Results show that the target’s porosity reduces crater volumes and cratering efficiency relative to nonporous rocks. Saturation of pore space with water to 50% and 90% increasingly counteracts the effects of porosity, leading to larger but flatter craters. Spallation becomes more dominant in larger‐scale experiments and leads to an increase in cratering efficiency with increasing projectile size for constant impact velocities. The volume of spalled material is estimated using parabolic fits to the crater morphology, yielding approximations of the transient crater volume. For impacts at the same velocity these transient craters show a constant cratering efficiency that is not affected by projectile size.  相似文献   

2.
Abstract— We present numerical simulations of crater formation under Martian conditions with a single near‐surface icy layer to investigate changes in crater morphology between glacial and interglacial periods. The ice fraction, thickness, and depth to the icy layer are varied to understand the systematic effects on observable crater features. To accurately model impact cratering into ice, a new equation of state table and strength model parameters for H2O are fitted to laboratory data. The presence of an icy layer significantly modifies the cratering mechanics. Observable features demonstrated by the modeling include variations in crater morphometry (depth and rim height) and icy infill of the crater floor during the late stages of crater formation. In addition, an icy layer modifies the velocities, angles, and volumes of ejecta, leading to deviations of ejecta blanket thickness from the predicted power law. The dramatic changes in crater excavation are a result of both the shock impedance and the strength mismatch between layers of icy and rocky materials. Our simulations suggest that many of the unusual features of Martian craters may be explained by the presence of icy layers, including shallow craters with well‐preserved ejecta blankets, icy flow related features, some layered ejecta structures, and crater lakes. Therefore, the cratering record implies that near‐surface icy layers are widespread on Mars.  相似文献   

3.
Abstract— Scaling laws describing crater dimensions are defined in terms of projectile velocity and mass, densities of the materials involved, strength of the target, and the local gravity. Here, the additional importance of target porosity and saturation, and an overlying water layer, are considered through 15 laboratory impacts of 1 mm diameter stainless steel projectiles at 5 km s?1 into a) an initially uncharacterized sandstone (porosity ?17%) and b) Coconino Sandstone (porosity ?23%). The higher‐porosity dry sandstone allows a crater to form with a larger diameter but smaller depth than in the lower‐porosity dry sandstone. Furthermore, for both porosities, a greater volume of material is excavated from a wet target than a dry target (by 27–30%). Comparison of our results with Pi‐scaling (dimensionless ratios of key parameters characterizing cratering data over a range of scales) suggests that porosity is important for scaling laws given that the new data lie significantly beneath the current fit for ice and rock targets on a πv versus π3 plot (πv gives cratering efficiency and π3 the influence of target strength). An overlying water layer results in a reduction of crater dimensions, with larger craters produced in the saturated targets compared to unsaturated targets. A water depth of approximately 12 times the projectile diameter is required before craters are no longer observed in the targets. Previous experimental studies have shown that this ratio varies between 10 and 20 (Gault and Sonett 1982). In our experiments ?25% of the original projectile mass survives the impact.  相似文献   

4.
2D numerical modelling of impact cratering has been utilized to quantify an important depth-diameter relationship for different crater morphologies, simple and complex. It is generally accepted that the final crater shape is the result of a gravity-driven collapse of the transient crater, which is formed immediately after the impact. Numerical models allow a quantification of the formation of simple craters, which are bowl-shaped depressions with a lens of rock debris inside, and complex craters, which are characterized by a structural uplift. The computation of the cratering process starts with the first contact of the impactor and the planetary surface and ends with the morphology of the final crater. Using different rheological models for the sub-crater rocks, we quantify the influence on crater mechanics. To explain the formation of complex craters in accordance to the threshold diameter between simple and complex craters, we utilize the Acoustic Fluidization model. We carried out a series of simulations over a broad parameter range with the goal to fit the observed depth/diameter relationships as well as the observed threshold diameters on the Moon, Earth and Venus.  相似文献   

5.
Many bodies in the outer solar system are theorized to have an ice shell with a different subsurface material below, be it chondritic, regolith, or a subsurface ocean. This layering can have a significant influence on the morphology of impact craters. Accordingly, we have undertaken laboratory hypervelocity impact experiments on a range of multilayered targets, with interiors of water, sand, and basalt. Impact experiments were undertaken using impact speeds in the range of 0.8–5.3 km s?1, a 1.5 mm Al ball bearing projectile, and an impact incidence of 45°. The surface ice crust had a thickness between 5 and 50 mm, i.e., some 3–30 times the projectile diameter. The thickness of the ice crust as well as the nature of the subsurface layer (liquid, well consolidated, etc.) have a marked effect on the morphology of the resulting impact crater, with thicker ice producing a larger crater diameter (at a given impact velocity), and the crater diameter scaling with impact speed to the power 0.72 for semi‐infinite ice, but with 0.37 for thin ice. The density of the subsurface material changes the structure of the crater, with flat crater floors if there is a dense, well‐consolidated subsurface layer (basalt) or steep, narrow craters if there is a less cohesive subsurface (sand). The associated faulting in the ice surface is also dependent on ice thickness and the substrate material. We find that the ice layer (in impacts at 5 km s?1) is effectively semi‐infinite if its thickness is more than 15.5 times the projectile diameter. Below this, the crater diameter is reduced by 4% for each reduction in ice layer thickness equal to the impactor diameter. Crater depth is also affected. In the ice thickness region, 7–15.5 times the projectile diameter, the crater shape in the ice is modified even when the subsurface layer is not penetrated. For ice thicknesses, <7 times the projectile diameter, the ice layer is breached, but the nature of the resulting crater depends heavily on the subsurface material. If the subsurface is noncohesive (loose) material, a crater forms in it. If it is dense, well‐consolidated basalt, no crater forms in the exposed subsurface layer.  相似文献   

6.
Abstract– We present a case modeling study of impact crater formation in H2O‐bearing targets. The main goal of this work was to investigate the postimpact thermal state of the rock layers modified in the formation of hypervelocity impact craters. We present model results for a target consisting of a mixture of H2O‐ice and rock, assuming an ice/water content variable with depth. Our model results, combined with results from previous work using dry targets, indicate that for craters larger than about 30 km in diameter, the onset of postimpact hydrothermal circulation is characterized by two stages: first, the formation of a mostly dry, hot central uplift followed by water beginning to flow in and circulate through the initially dry and hot uplifted crustal rocks. The postimpact thermal field in the periphery of the crater is dependent on crater size: in midsize craters, 30–50 km in diameter, crater walls are not strongly heated in the impact event, and even though ice present in the rock may initially be heated enough to melt, overall temperatures in the rock remain below melting, undermining the development of a crater‐wide hydrothermal circulation. In large craters (with diameters more than 100 km or so), the region underneath the crater floor and walls is heated well above the melting point of ice, thus facilitating the onset of an extended hydrothermal circulation. These results provide preliminary constraints in characterizing the many water‐related features, both morphologic and spectroscopic, that high‐resolution images of Mars are now detecting within many Martian craters.  相似文献   

7.
The morphology of impact craters on the icy Galilean satellites differs from craters on rocky bodies. The differences are thought due to the relative weakness of ice and the possible presence of sub-surface water layers. Digital elevation models constructed from Galileo images were used to measure a range of dimensions of craters on the dark and bright terrains of Ganymede. Measurements were made from multiple profiles across each crater, so that natural variation in crater dimensions could be assessed and averaged scaling trends constructed. The additional depth, slope and volume information reported in this work has enabled study of central peak formation and development, and allowed a quantitative assessment of the various theories for central pit formation. We note a possible difference in the size-morphology progression between small craters on icy and silicate bodies, where central peaks occur in small craters before there is any slumping of the crater rim, which is the opposite to the observed sequence on the Moon. Conversely, our crater dimension analyses suggest that the size-morphology progression of large lunar craters from central peak to peak-ring is mirrored on Ganymede, but that the peak-ring is subsequently modified to a central pit morphology. Pit formation may occur via the collapse of surface material into a void left by the gradual release of impact-induced volatiles or the drainage of impact melt into sub-crater fractures.  相似文献   

8.
《Icarus》1987,69(3):506-518
New results of low-velocity impact experiments in cubic and cylindrical (20 cm) water-ice targets initially at 257 and 81 °K are reported. Impact velocities and impact energies vary between 0.1 and 0.64 km/sec and 109 and 1010 ergs, respectively. Observed crater diameters range from 7 to 15 cm and are two to three times larger than values found for equal-energy impacts in basaltic targets. Crater dimensions in ice targets increase slightly with increasing target temperatures. Crater volumes of strength-controlled ice craters are about 10 to 100 times larger than those observed for craters in crystalline rocks. Based on similarity analysis, general scaling laws for strength-controlled crater formation are derived and are applied to crater formation on the icy Galilean and Saturnian satellites. This analysis indicates that surface ages, based on impact-crater statistics on an icy crust, will appear greater than those for a silicate crust which experienced the same impact history. The greater ejecta volume for cratering in ice versus cratering in silicate targets leads to accelerated regolith production on an icy planet.  相似文献   

9.
Abstract— The dimensions of large craters formed by impact are controlled to a large extent by gravity, whereas the volume of impact melt created during the same event is essentially independent of gravity. This “differential scaling” fosters size-dependent changes in the dynamics of impact-crater and basin formation as well as in the final morphologies of the resulting structures. A variety of such effects can be observed in the lunar cratering record, and some predictions can be made on the basis of calculations of impact melting and crater dimensions. Among them are the following: (1) as event magnitude increases, the volume of melt created relative to that of the crater will grow, and more will be retained inside the rim of the crater or basin. (2) The depth of melting will exceed the depth of excavation at diameters that essentially coincide with both the inflection in the depth-diameter trend and the simple-to-complex transition. (3) The volume of melt will exceed that of the transient cavity at a cavity diameter on the order of the diameter of the Moon; this would arguably correspond to a Moon-melting event. (4) Small lunar craters only rarely display exterior flows of impact melt because the relatively small volumes of melt created can become choked with clasts, increasing the melt's viscosity and chilling it rapidly. Larger craters and basins should suffer little from such a process. (5) Deep melting near the projectile's axis of penetration during larger events will yield a progression in central-structure morphology; with growing event magnitude, this sequence should range from single peaks through multiple peaks to peak rings. (6) The minimum depth of origin of central-peak material should coincide with the maximum depth of melting; the main central peak in a crater the size of Tycho should have had a preimpact depth of close to 15 km.  相似文献   

10.
Abstract— Observations of impact craters on Earth show that a water column at the target strongly influences lithology and morphology of the resultant crater. The degree of influence varies with the target water depth and impactor diameter. Morphological features detectable in satellite imagery include a concentric shape with an inner crater inset within a shallower outer crater, which is cut by gullies excavated by the resurge of water. In this study, we show that if oceans, large seas, and lakes existed on Mars for periods of time, marine‐target craters must have formed. We make an assessment of the minimum and maximum amounts of such craters based on published data on water depths, extent, and duration of putative oceans within “contacts 1 and 2,” cratering rate during the different oceanic phases, and computer modeling of minimum impactor diameters required to form long‐lasting craters in the seafloor of the oceans. We also discuss the influence of erosion and sedimentation on the preservation and exposure of the craters. For an ocean within the smaller “contact 2” with a duration of 100,000 yr and the low present crater formation rate, only ?1–2 detectable marine‐target craters would have formed. In a maximum estimate with a duration of 0.8 Gyr, as many as 1400 craters may have formed. An ocean within the larger “contact 1‐Meridiani,” with a duration of 100,000 yr, would not have received any seafloor craters despite the higher crater formation rate estimated before 3.5 Gyr. On the other hand, with a maximum duration of 0.8 Gyr, about 160 seafloor craters may have formed. However, terrestrial examples show that most marine‐target craters may be covered by thick sediments. Ground penetrating radar surveys planned for the ESA Mars Express and NASA 2005 missions may reveal buried craters, though it is uncertain if the resolution will allow the detection of diagnostic features of marine‐target craters. The implications regarding the discovery of marine‐target craters on Mars is not without significance, as such discoveries would help address the ongoing debate of whether large water bodies occupied the northern plains of Mars and would help constrain future paleoclimatic reconstructions.  相似文献   

11.
The review and new measurements are presented for depth/diameter ratio and slope angle evolution during small (D < 1 km) lunar impact craters aging (degradation). Comparative analysis of available data on the areal cratering density and on the crater degradation state for selected craters, dated with returned Apollo samples, in the first approximation confirms Neukum’s chronological model. The uncertainty of crater retention age due to crater degradational widening is estimated. The collected and analyzed data are discussed to be used in the future updating of mechanical models for lunar crater aging.  相似文献   

12.
Abstract— Given that the Earth's surface is covered in around two‐thirds water, the majority of impact events should have occurred in marine environments. However, with the presence of a water layer, crater formation may be prohibited. Indeed, formation is greatly controlled by the water depth to projectile diameter ratio, as discussed in this paper. Previous work has shown that the underlying target material also influences crater formation (e.g., Gault and Sonett 1982; Baldwin et al. 2007). In addition to the above parameters we also show the influence of impact angle, impact velocity and projectile density for a variety of water depths on crater formation and projectile survivability. The limiting ratio of water depth to projectile diameter on cratering represents the point at which the projectile is significantly slowed by transit through the water layer to reduce the impact energy to that which prohibits cratering. We therefore study the velocity decay produced by a water layer using laboratory, analytical and numerical modelling techniques, and determine the peak pressures endured by the projectile. For an impact into a water depth five times the projectile diameter, the velocity of the projectile is found to be reduced to 26–32% its original value. For deep water impacts we find that up to 60% of the original mass of the projectile survives in an oblique impact, where survivability is defined as the solid or melted mass fraction of the projectile that could be collected after impact.  相似文献   

13.
Abstract— A model for emplacement of deposits of impact craters is presented that explains the size range of Martian layered ejecta craters between 5 km and 60 km in diameter in the low and middle latitudes. The impact model provides estimates of the water content of crater deposits relative to volatile content in the aquifer of Mars. These estimates together with the amount of water required to initiate fluid flow in terrestrial debris flows provide an estimate of 21% by volume (7.6 × 107km3) of water/ice that was stored between 0.27 and 2.5 km depth in the crust of Mars during Hesperian and Amazonian time. This would have been sufficient to supply the water for an ocean in the northern lowlands of Mars. The existence of fluidized craters smaller than 5 km diameter in some places on Mars suggests that volatiles were present locally at depths less than 0.27 km. Deposits of Martian craters may be ideal sites for searches for fossils of early organisms that may have existed in the water table if life originated on Mars.  相似文献   

14.
Studies of impacts (impactor velocity about 5 km s−1) on icy targets were performed. The prime goal was to study the response of solid CO2 targets to impacts and to find the differences between the results of impacts on CO2 targets with those on H2O ice targets. The crater dimensions in CO2 ice were found to scale with impact energy, with little dependence on projectile density (which ranged from nylon to copper, i.e., 1150-8930 kg m−3). At equal temperatures, craters in CO2 ice were the same diameter as those in water ice, but were shallower and smaller in volume. In addition, the shape of the radial profiles of the craters was found to depend strongly on the type of ice and to change with impact energy. The impact speed of the data is comparable to that for impacts on many types of icy bodies in the outer Solar System (e.g., the satellites of the giant planets, the cometary nuclei and the Kuiper Belt objects), but the size and thus energy of the impactors is lower. Scaling with impact energy is demonstrated for the impacts on CO2 ice. The issue of impact disruption (rather than cratering) is discussed by analogy with that on water ice. Expressions for the critical energy density for the onset of disruption rather than cratering are established for water ice as a function of porosity and silicate content. Although the critical energy density for disruption of CO2 ice is not established, it is argued that the critical energy to disrupt a CO2 ice body will be greater than that for a (non-porous) water ice body of the similar mass.  相似文献   

15.
Two impact cratering experiments on nonporous rock targets were carried out to determine the influence of target composition on the structural mechanisms of subsurface deformation. Projectiles of 2.5 mm diameter were accelerated to ~5 km s−1 and impacted onto blocks of marble or quartzite. Subsurface deformation was mapped and analyzed on the microscale using thin sections of the bisected craters. Additionally, both experiments were modeled and the calculated strain zones underneath the craters were compared to experimental deformation features. Microanalysis shows that the formation of radial, tensile, and intragranular cracks is a common response of both nonporous materials to impact cratering. In the quartzite target, the subsurface damage is additionally characterized by highly localized deformation along shear bands with intense grain comminution, surrounded by damage zones. In contrast, the marble target shows closely spaced calcite twinning and cleavage activation. Crater diameter and depth as well as the damage lens underneath the crater are unexpectedly smaller in the marble target compared to the quartzite target, which is in contradiction to the marble's much weaker compressive and tensile strengths. However, numerical models result in craters that are similar in size as well as in strain accumulation at the end of transient crater formation, indicating that current models should still be viewed cautiously when compared to experimental details.  相似文献   

16.
We model the cratering of the Moon and terrestrial planets from the present knowledge of the orbital and size distribution of asteroids and comets in the inner Solar System, in order to refine the crater chronology method. Impact occurrences, locations, velocities and incidence angles are calculated semi-analytically, and scaling laws are used to convert impactor sizes into crater sizes. Our approach is generalizable to other moons or planets. The lunar cratering rate varies with both latitude and longitude: with respect to the global average, it is about 25% lower at (±65°N, 90°E) and larger by the same amount at the apex of motion (0°N, 90°W) for the present Earth-Moon separation. The measured size-frequency distributions of lunar craters are reconciled with the observed population of near-Earth objects under the assumption that craters smaller than a few kilometers in diameter form in a porous megaregolith. Varying depths of this megaregolith between the mare and highlands is a plausible partial explanation for differences in previously reported measured size-frequency distributions. We give a revised analytical relationship between the number of craters and the age of a lunar surface. For the inner planets, expected size-frequency crater distributions are calculated that account for differences in impact conditions, and the age of a few key geologic units is given. We estimate the Orientale and Caloris basins to be 3.73 Ga old, and the surface of Venus to be 240 Ma old. The terrestrial cratering record is consistent with the revised chronology and a constant impact rate over the last 400 Ma. Better knowledge of the orbital dynamics, crater scaling laws and megaregolith properties are needed to confidently assess the net uncertainty of the model ages that result from the combination of numerous steps, from the observation of asteroids to the formation of craters. Our model may be inaccurate for periods prior to 3.5 Ga because of a different impactor population, or for craters smaller than a few kilometers on Mars and Mercury, due to the presence of subsurface ice and to the abundance of large secondaries, respectively. Standard parameter values allow for the first time to naturally reproduce both the size distribution and absolute number of lunar craters up to 3.5 Ga ago, and give self-consistent estimates of the planetary cratering rates relative to the Moon.  相似文献   

17.
Abstract— It has been known for some time that the volume of impact melt (Vm) relative to that of the transient cavity (Vtc) increases with the magnitude of the impact event. This paper investigates the influence that this phenomenon has on the nature of terrestrial impact craters. A model of impact melting is used to estimate the volume of melt produced during the impact of chondritic projectiles into granite targets at velocities of 15, 25, and 50 km S?1. The dimensions of transient cavities formed under the same impact conditions are calculated from current crater-scaling relationships, which are derived from dimensional analysis of data from cratering experiments. Observed melt volumes at terrestrial craters are collated from the literature and are paired with the transient-cavity diameters (Dtc) of their respective craters; these diameters were determined through an established empirical relationship. The model and observed melt volumes have very similar trends with increasing transient-cavity diameter. This Vm-Dtc relationship is then used to make predictions regarding the nature of the terrestrial cratering record. In particular, with increasing size of the impact event, the depth of melting approaches the depth of the transient cavity. As a consequence, the base of the cavity, which ultimately would appear as an uplifted central structure in a complex crater, will record shock stresses that will increase up to a maximum of partial melting. Examination of the terrestrial record indicates a general trend for higher recorded shock levels in central structures at larger diameters; impact structures in the 100-km size range record partially melted and vesiculated parautochthonous target rocks in their centers. In addition, as the depth of melting approaches a depth equivalent to that attained by the base of the transient cavity, the floor of the transient cavity will have progressively less strength, with the result that cavity modification and uplift will not produce topographic central peaks. Again, the observed terrestrial record is not inconsistent with this prediction, and we offer differential melt scaling as a possible mechanism for the transition from central topographic peaks to rings with increasing crater diameter. Among other implications is the likelihood that impact basins in the 1000-km size range on the early Earth would not have the same multi-ring form as observed on the moon.  相似文献   

18.
Laurel E. Senft 《Icarus》2011,214(1):67-81
Impact craters on icy satellites display a wide range of morphologies, some of which have no counterpart on rocky bodies. Numerical simulation studies have struggled to reproduce the diversity of features, such as central pits and transitions in crater depth with increasing diameter, observed on the icy Galilean satellites. The transitions in crater depth (at diameters of about 26 and 150 km on Ganymede and Callisto) have been interpreted as reflecting subsurface structure. Using the CTH shock physics code, we model the formation of craters with diameters between 400 m and about 200 km on Ganymede using different subsurface temperature profiles. Our calculations include recent improvements in the model equation of state for H2O and quasi-static strength parameters for ice. We find that the shock-induced formation of dense high-pressure polymorphs (ices VI and VII) creates a gap in the crater excavation flow, which we call discontinuous excavation. For craters larger than about 20 km, discontinuous excavation concentrates a hot plug of material (>270 K and mostly on the melting curve) in the center of the crater floor. The size and occurrence of the hot plug are in good agreement with the observed characteristics of central pit craters, and we propose that a genetic link exists between them. We also derive depth versus diameter curves for different internal temperature profiles. In a 120 K isothermal crust, calculated craters larger than about 30 km diameter are deeper than observed and do not reproduce the transition at about 26 km diameter. Calculated crater depths are shallower and in good agreement with observations between about 30 and 150 km diameter using a warm thermal gradient representing a convective interior. Hence, the depth-to-diameter transition at about 26 km reflects thermal weakening of ice. Finally, simulation results generally support the hypothesis that the anomalous interior morphologies for craters larger than 100 km are related to the presence of a subsurface ocean.  相似文献   

19.
Abstract— The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near‐surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements. Here, we present the results from geometrical measurements of fresh craters 3–50 km in rim diameter in selected highland (Lunae and Solis Plana) and lowland (Acidalia, Isidis, and Utopia Planitiae) terrains. We find large, resolved differences between the geometrical properties of the freshest highland and lowland craters. Simple lowland craters are 1.5–2.0 times deeper (≥5s?o difference) with >50% larger cavities (≥2s?o) compared to highland craters of the same diameter. Rim heights and the volume of material above the preimpact surface are slightly greater in the lowlands over most of the size range studied. The different shapes of simple highland and lowland craters indicate that the upper ?6.5 km of the lowland study regions are significantly stronger than the upper crust of the highland plateaus. Lowland craters collapse to final volumes of 45–70% of their transient cavity volumes, while highland craters preserve only 25–50%. The effective yield strength of the upper crust in the lowland regions falls in the range of competent rock, approximately 9–12 MPa, and the highland plateaus may be weaker by a factor of 2 or more, consistent with heavily fractured Noachian layered deposits. The measured volumes of continuous ejecta blankets and uplifted surface materials exceed the predictions from standard crater scaling relationships and Maxwell's Z model of crater excavation by a factor of 3. The excess volume of fluidized ejecta blankets on Mars cannot be explained by concentration of ejecta through nonballistic emplacement processes and/or bulking. The observations require a modification of the scaling laws and are well fit using a scaling factor of ?1.4 between the transient crater surface diameter to the final crater rim diameter and excavation flow originating from one projectile diameter depth with Z = 2.7. The refined excavation model provides the first observationally constrained set of initial parameters for study of the formation of fluidized ejecta blankets on Mars.  相似文献   

20.
Abstract— We are testing the idea of Squyres et al. (1992) that rampart craters on Mars may have formed over a significant time period and therefore the onset diameter (minimum diameter of a rampart crater) only reflects the ground ice depth at a given time. We measured crater size frequencies on the layered ejecta of rampart craters in three equatorial regions to derive absolute model ages and to constrain the regional volatile history. Nearly all rampart craters in the Xanthe Terra region are ?3.8 Gyr old. This corresponds to the Noachian fluvial activity that region. Rampart crater formation declines in the Hesperian, whereas onset diameters (minimum diameter) increase. No new rampart craters formed after the end of the Hesperian (?3 Gyr). This indicates a lowering of the ground ice table with time in the Xanthe Terra region. Most rampart craters in the Valles Marineris region are around 3.6 Gyr old. Only one large, probably Amazonian‐aged (?2.5 Gyr), rampart crater exists. These ages indicate a volatile‐rich period in the Early Hesperian and a lowering of the ground ice table with time in the Valles Marineris study region. Rampart craters in southern Chryse Planitia, which are partly eroded by fluvial activity, show ages around 3.9 Gyr. Rampart craters superposed on channels have ages between ?1.5 and ?0.6 Gyr. The onset diameter (3 km at ?1.5 Gyr) in this region may indicate a relatively shallow ground ice table. Loss of volatiles due to diffusion and sublimation might have lowered the ground ice table even in the southern Chryse Planitia region afterwards. In general, our study implies a formation of the smallest rampart craters within and/or shortly after periods of fluvial activity and a subsequent lowering of the ground ice table indicated by increasing onset diameter to the present. These results question the method to derive present equatorial ground ice depths from the onset diameter of rampart craters without information about their formation time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号