首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Big data obtained from a stellar spectroscopic survey carried out using the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST, also known as Guo Shou Jing telescope) provide important information for studying chromospheric activity, variability of chromospheric activity, and chromospheric statistical properties, and for searching subdwarfs and extreme subdwarfs. Using as chromospheric activity indicator the Hα line, we detected 6391 active M stars among the 99741 stars in the M-star catalogue of the LAMOST survey. We also obtained the relationship between the fraction of active stars and the spectral types, which is consistent to previous results. We also studied the effects of activity on broadband photometric colors, and we did not see significant differences between active and inactive M stars. Using as spectroscopic molecular indicators the CaH123 and TiO5 lines, we found 1288 subdwarfs (including 120 active subdwarfs). We also found 15 extreme subdwarf (2 active extreme subdwarf) candidates. Our subdwarf candidates are slightly redder by about 0.05 mag in g-r compared with dwarfs using the g-r and r-i, and g-r and i-z color diagrams. Using our active M-star catalogue, we found that 898 stars exhibited Hα emission in at least two exposures (170 of them in at least three exposures). Among these 170 stars, 163 of them show variability in Hα emission on long timescales (more than 2.5 h). Furthermore, 34 stars show variability over short timescales (less than 2.5 h), and 29 actives show variability over both short and long time scales.  相似文献   

2.
In this study, we present the first Johnson BV photometry of the eclipsing binary star ET Bootis, which is member of a physically connected visual pair. Analysis of times of light minima enables us to calculate accurate ephemeris of the system via OC analysis and observed an increase in period which we believe is a result of the light-time effect in the outer visual orbit. Secondly, we determined the total brightness and color of the system in light maxima and minima. Photometric solution of the system indicates that the contribution of the visual pair to the total light is about 40% in Johnson V band. Furthermore, photometric analysis shows that the primary star in the eclipsing binary has F8 spectral type while it confirms the G5 spectral type for the visual pair. Masses of the components in eclipsing binary are M1 = 1.109 ± 0.014 M and M2 = 1.153 ± 0.011 M. Absolute radii of the components are R1 = 1.444 ± 0.007 R and R2 = 1.153 ± 0.007 R. Physical properties of the components leads 176 ± 7 pc distance for the system and suggests an age of 6.5 billion years.  相似文献   

3.
The first reliable radial velocity curves for RZ Tau have been obtained. Combined with new light curve (LC) data, simultaneous Roche-based light curve analyses have been carried out using the 2003 version of the Wilson-Devinney code. New values for the masses and radii have been obtained: M1 = 1.53 (4) Mʘ, M2 = 0.57 (2) Mʘ, and R1 = 1.50 (4) Rʘ, R2 = 0.99 (2) Rʘ. Although there is a multitude of spectral classifications listed in the literature, the classification of F0 from Struve et al. (1950) is shown to be the most reliable. On the basis of the latter, the most likely luminosities are L1 = 4.97 (44) Lʘ and L2 = 2.11 (19) Lʘ. Additional modelling was carried out using the same RV data, but with LC data (binned and unbinned) from Binnendijk (1963); the results were substantially the same except that they favoured slightly later spectral sub-classes.  相似文献   

4.
Multiple reflectance spectra of 11 CV chondrites have been measured to determine spectral–compositional relationships for this meteorite class and to aid the search for CV parent bodies. The reflectance of CV chondrite spectra is variable, ranging from ~5% to 13% at 0.56 μm, and ~5% to 15% at the 0.7 μm region local reflectance maximum. Overall slopes range from slightly blue to red for powders, while slab spectra are strongly blue-sloped. With increasing average grain size and/or removal of the finest fraction, CV spectra generally become more blue-sloped. CV spectra are characterized by ubiquitous absorption features in the 1 and 2 μm regions. The 1 μm region is usually characterized by a band centered near 1.05–1.08 μm and a band or shoulder near 1.3 μm that are characteristic of Fe-rich olivine. Band depths in the 1 μm region for powdered CVs and slabs range from ~1% to 10%. The 2 μm region is characterized by a region of broad absorption that extends beyond 2 μm and usually includes band minima near 1.95 and 2.1 μm; these features are characteristic of Fe2+-bearing spinel. The sample suite is not comprehensive enough to firmly establish whether spectral differences exist between CVR, CVOxA, and CVOxB subclasses, or as a function of metamorphic grade. However, we believe that the mineralogic and petrologic differences that exist between these classes, and with varying petrologic subtype (CV3.0–>3.7), may not be significant enough to result in measurable spectral differences that exceed spectral variations within a subgroup, within an individual meteorite, or as a function of grain size. Terrestrial weathering seems to affect CV spectra most noticeably in the visible region, resulting in more red-sloped spectra for finds as compared to falls. The search for CV parent bodies should focus on the detection of olivine and spinel absorption bands, specifically absorption features near 1.05, 1.3, 1.95, and 2.1 μm, as these are the most commonly seen spectral features of CV chondrites.  相似文献   

5.
New radial velocity and photometric data for BO Ari have been obtained, and Roche-based simultaneous analysis of RV and light curve data for the system has been accomplished using the 2003 version of the Wilson-Devinney code. Values for the masses and radii have been obtained: M1 = 1.34 (2) Mʘ, M2 = 0.26 (1) Mʘ, and R1 = 1.25 (2) Rʘ, R2 = 0.61 (2) Rʘ. For the luminosities the most likely values are L1 = 1.67 (15) Lʘ and L2 = 0.42 (4) Lʘ, each the mean of two values. There is poor agreement with earlier values by Gurol et al. (2015). During the light curve modelling, solutions were found with a small third light contribution, but the existence of the latter cannot be established unambiguously owing to the very close residuals of the different solutions. A third component was not found in the RV data within detection limits.  相似文献   

6.
We obtained multi-colour light curves of the overcontact binary system HH Boo and analysed the orbital period variation of the system. Our analysis tentatively indicates either mass transfer from the secondary to the primary or mass loss from the system at a rate of -5.04 × 10−7 M per year. Through a combined analysis of the published radial velocity curve and light curves, we determined an inclination (i) of 69°.71 ± 0°.16 and a semi-major axis (a) of 2.246 ± 0.064 R for HH Boo. The masses of the primary and secondary components were found to be 0.92 ± 0.08 M and 0.58 ± 0.06 M, respectively. The radius determined for the primary was 0.98 ± 0.03 R, while that determined for the secondary was 0.80 ± 0.02 R. We demonstrated that HH Boo is most likely a member of the A-type subclass of W UMa binaries.  相似文献   

7.
We present photometric observations of two post-common-envelope stars, NY Vir (=PG 1336-018) and HS 0705 + 6700. The V band CCD observation of NY Vir was performed by a 40 cm telescope at Ege University Observatory and the R band observations of HS 0705 + 6700 were performed by 100 cm telescope at TÜB?TAK National Observatory. The new light curves were analyzed by the WD code and the physical parameters of stars were determined. We obtained new mid-eclipse timings for HS 0705 + 6700 and combined them with those previously published data. The analysis of the O-C residuals yields a period of about 8.06 ± 0.28 yr and an amplitude of 98.5 s for the system HS 0705 + 6700, which is attributed to the third star physically bounded to the evolved eclipsing pair. A mass function of 1.2 × 10−4 M for the third star is obtained. The existence of a third star is also confirmed by the light curve analysis, indicating light contribution of about 0.043 at phase 0.25 in R-bandpass of the eclipsing pair. Using mass-luminosity relationship of the low mass stars we estimate a mass of 0.12 M with an orbital inclination of about 20°. The O-C residuals obtained for the system NY Vir were represented by a downward parabola which indicates orbital period decrease in the system. Using the coefficient of quadratic term we calculate a rate of orbital period decrease of about dP/dt = −4.09 × 10−8days yr−1. The period decrease we have measured in NY Vir may be explained by angular momentum loss from the binary system.  相似文献   

8.
The nucleus of Comet 9P/Tempel 1 was first observed with the Hubble Space Telescope (HST) in December 1997 [Lamy, P., Toth, I., A'Hearn, M.F., Weaver, H., Weissman, P.R., 2001. Icarus 154, 337-344], but the temporal coverage was insufficient to determine its rotational period. Because the success of the Deep Impact mission was critically dependent on understanding the rotational state and approximate shape and size of the nucleus, we extensively re-observed 9P/Tempel 1, this time with the Advanced Camera for Surveys (HST/ACS), from May 7.9 to 9.5, 2004 (UT). At the mid-point of the observing window, the comet was 3.52 AU from the Sun, 4.03 AU from the Earth, and at a solar phase angle of 13.3°. The program was comprised of 18 separate visits, each one corresponding to an HST orbit filled with 3 ACS exposures of either 800 or 857 s duration with the F606W broadband filter. These very deep exposures revealed a star-like object, without any apparent coma. The light curve, defined by 49 data points, is characterized by a mean apparent V magnitude of 21.8 and an amplitude of 0.5 mag, indicating that we were viewing the varying cross-section of a rotating, elongated body. The periodicity was analyzed with seven different techniques yielding a rotational period in the range 39.40 to 43.00 h, and a mean value of 41.27±1.85 h (1σ). Using an albedo pV=0.04 and a linear phase law with a coefficient , we determined an effective radius of 3.01 km; a possible prolate spheroid solution has semi-axes a=3.71 km, b=2.36 km and a minimum axial ratio a/b∼1.57. By comparing the light curves obtained in 1997 and in 2004, we were able to constrain the phase function of the nucleus. Finally, an upper limit of Afρ<0.04 cm is set based on the non-detection of the coma.  相似文献   

9.
Using γ-ray band data detected by Fermi Large Area Telescope (LAT) and X-ray band data for 78 blazars, we find a medium correlation between X-ray flux and γ-ray flux in all states. A medium correlation is also found between X-ray (1 keV) mean spectral index α x and γ-ray mean spectral index α γ for BL Lacertae objects (BL Lacs), and there is no correlation for Flat Spectrum Radio Quasars (FSRQs). From these results, we suggest that the most likely radiation mechanism for the high energy gamma-rays would be synchrotron self-Compton (SSC), and that the gamma-ray emission mechanism may be somewhat different for BL Lacs and FSRQs.  相似文献   

10.
This paper presents new CCD Bessell BVRI light curves and photometric analysis of the Algol-type binary star TX Her. The CCD observations were carried out at Çanakkale Onsekiz Mart University Observatory in 2010. New BVRI light curves from this study and radial velocity curves from Popper (1970) were solved simultaneously using modern light and radial velocity curves synthesis methods. The general results show that TX Her is a well-detached eclipsing binary, however, both component stars fill at least half of their Roche lobes. A significant third light contribution to the total light of the system could not be determined. Using OC residuals formed by the updated minima times, an orbital period study of the system was performed. It was confirmed that the tilted sinusoidal OC variation corresponds to an apparent period variation caused by the light travel time effect due to an unseen third body. The following absolute parameters of the components were derived: M1 = 1.62 ± 0.04 M, M2 = 1.45 ± 0.03 M, R1 = 1.69 ± 0.03 R, R2 = 1.43 ± 0.03 R, L1 = 8.21 ± 0.90 L and L2 = 3.64 ± 0.60 L. The distance to TX Her was calculated as 155 ± 10 pc, taking into account interstellar extinction. The position of the components of TX Her in the HR diagram are also discussed. The components are young stars with an age of ~500 Myr.  相似文献   

11.
We present V- and R- band time-series CCD photometry of two contact binaries in the region of the young open cluster NGC 957. The two eclipsing binaries were discovered by Bukowiecki et al., 2009. OEJV 112, 1 and named as V4 and V5, respectively. In the present paper, the first detailed studies of the two contact binary systems are carried out. Firstly, based on the light curves, 28 times of minimum light were detected for V4 and 21 times of minimum light for V5, respectively. Secondly, the orbital periods of V4 and V5 were redetermined as PV4 = 0.40032(5) days and PV5 = 0.30752 (4)days, respectively. The photometric solutions were analyzed by using Wilson Decinny Code. The results reveal that both V4 and V5 are W UMa-type contact binaries with a degree of fV4 = 31(± 1)% and fV5 = 65(± 1)%. The mass ratios were determined to be qV4 = 0.30 and qV5 = 0.19. For V5, the well known O’Connell effect was detected in the dataset, which effect can be explained by employing a dark spot placed on the more massive primary component. Finally, based on the distances of the two contact binaries, which were calculated by using an relation given by Gettel et al., the two contact binaries are judged to be foreground stars in the open cluster NGC 957.  相似文献   

12.
We present new, near-aphelion, time series of photometry of Comet 2P/Encke in Cousins-R band. With these light curves we find that the dominant, synodic rotational periodicity is either P0=11.079±0.009 h or 2P0=22.158±0.012 h. This is in contrast to data from the 1980s published by others that are consistent with 15.08- and 22.6-h periods. Those periods do not satisfy our phased light curves, and also the 1980s data are not easily reconciled with our periods. This could be due to P/Encke having non-principal axis rotation or due to a drift in the rotation period caused by outgassing torques. We observed the comet at five epochs: July, August, September, and October 2001, and September 2002, and the comet was at times intrinsically brighter than expected for a bare nucleus, due to an apparent contribution from an unresolved coma. Three-quarters of the data were obtained in the second and fifth epochs, and we analyzed these two time series using both the phase-dispersion minimization and “WindowCLEAN” techniques. At both epochs and with both techniques strong periodicities were found near frequencies and . By then using visual inspection of the phased light curves to corroborate these frequencies, and by using the data from the other three epochs to properly align light curve features, we were able to derive P0 and 2P0 as the only solutions that satisfy all our observations. The periodicity due to f1 is clearly seen in our data, but we cannot tell from our data alone whether it is a manifestation of the nucleus's shape, non-principal axis rotation, or both.  相似文献   

13.
We obtained complete V and Rc light curves of the eclipsing binary V380 Gem in 2012. With our data we were able to determine six new times of minimum light and refine the orbital period of the system to 0.3366088 days. The 2003 version of the Wilson–Devinney code was used to analyze the light curves in the V and Rc bands simultaneously. It is shown that V380 Gem may be classified as an W-type W Ursae Majoris system with a high mass ratio q = 1.45, a degree of contact f = 10.6% the same temperature for both the components (ΔT = 10 K) and an orbital inclination of i  = 81.5°. Our observations show symmetric light curves in all passbands with brightness in both maxima at the same level. The absolute dimensions of V380 Gem are estimated and its dynamical evolution is inferred.  相似文献   

14.
As part of the DarkSide program of direct dark matter searches using two-phase argon TPCs, a prototype detector with an active volume containing 10 kg of liquid argon, DarkSide-10, was built and operated underground in the Gran Sasso National Laboratory in Italy. A critically important parameter for such devices is the scintillation light yield, as photon statistics limits the rejection of electron-recoil backgrounds by pulse shape discrimination. We have measured the light yield of DarkSide-10 using the readily-identifiable full-absorption peaks from gamma ray sources combined with single-photoelectron calibrations using low-occupancy laser pulses. For gamma lines of energies in the range 122–1275 keV, we get light yields averaging 8.887±0.003(stat)±0.444(sys) p.e./keVee. With additional purification, the light yield measured at 511 keV increased to 9.142±0.006(stat) p.e./keVee.  相似文献   

15.
In this paper we study a possible existence of surface wave (SW) global modes of the outer magnetosphere. The SW modes are supported by two plasma discontinuities: the plasmapause and the boundary between the open and closed field lines of the magnetosphere. Conditions under which the SW global modes can propagate azimuthally and along the magnetic field lines are examined. The ionosphere at the ends of the field lines is considered as reflecting boundaries of these SW modes. As a result SW standing wave structures along the magnetic field fluxes can be formed. Two branches of SW modes are derived. The low frequency branch, fs,1 falls in the Pc5 range, while the high frequency branch, fs,2—in the Pc4 range, where fs,1(2) is the fundamental SW global mode frequency. Their frequencies possess quantized properties in the following way: f≡(1,2,3, …)fs,1(2). The high frequency SW branch, fs,2 exists only for relatively great azimuthal wavenumbers k. It is pointed out that most of the SW global mode characteristics are similar to those of the FLR. These results are applied to 1.8 mHz global mode observations on 11 January 1997. Spectral, phase and polarization properties of this Pc5 pulsation event under northward IMF conditions are examined as we see them from ground-based (L’Aquila and TNB observatories) and satellite (POLAR and INTERBALL) observations.  相似文献   

16.
We present BVRI colors of 13 jovian and 8 saturnian irregular satellites obtained with the 2.56 m Nordic Optical Telescope on La Palma, the 6.5 m Magellan Baade Telescope on La Campanas, and the 6.5 m MMT on Mt. Hopkins. The observations were performed from December 2001 to March 2002. The colors of the irregular satellites vary from grey to light red. We have arbitrarily divided the known irregular satellites into two classes based on their colors. One, the grey color class, has similar colors to the C-type asteroids, and the other, the light red color class, has colors similar to P/D-type asteroids. We also find at least one object, the jovian irregular J XXIII Kalyke, that has colors similar to the red colored Centaurs/TNOs, although its classification is insecure. We find that there is a correlation between the physical properties and dynamical properties of the irregular satellites. Most of the dynamical clusters have homogeneous colors, which points to single homogeneous progenitors being cratered or fragmented as the source of each individual cluster. The heterogeneously colored clusters are most easily explained by assuming that there are several dynamical clusters in the area, rather than just one, or that the parent body was a differentiated, heterogeneous body. By analyzing simple cratering/fragmentation scenarios, we show that the heterogeneous colored S IX Phoebe cluster, is most likely two different clusters, a grey colored cluster centered on S IX Phoebe and a light red colored cluster centered on S/2000 S 1. To which of these two clusters the remaining saturnian irregulars with inclinations close to 174° belong is not clear from our analysis, but determination of their colors should help constrain this. We also show through analysis of possible fragmentation and dispersion of the six known uranian irregulars that they most likely make up two clusters, one centered on U XVI Caliban and another centered on U XVII Sycorax. We further show that, although the two objects have similar colors, a catastrophic fragmentation event creating one cluster containing both U XVI Caliban and U XVII Sycorax would have involved a progenitor with a diameter of ∼395 km. While such an event is not impossible it seems rather improbable, and we further show that such an event would leave 5-6 fragments with sizes comparable to or larger than U XVI Caliban. The stable region around Uranus has been extensively searched to limiting magnitudes far beyond that of U XVI Caliban. The fact that only U XVI Caliban, the larger U XVII Sycorax and four much smaller objects have been found leaves us with a distribution not compatible with a catastrophic event with such a large progenitor. The most likely solution is therefore two separate events creating two uranian dynamical clusters.  相似文献   

17.
The HCN emission features near 3 μm recently detected by Geballe et al. (2003, Astrophys. J. 583, L39) are analyzed with a model for fluorescence of sunlight in the ν3 band of HCN. The emission spectrum is consistent with current knowledge of the atmospheric temperature profile and the HCN distribution inferred from millimeter-wave observations. The spectrum is insensitive to the abundance of HCN in the thermosphere and the thousand-fold enhancement relative to photochemical models suggested by Geballe et al. (2003, Astrophys. J. 583, L39) is not required to explain the observations. We find that the spectrum can be matched with temperatures from 130 to 200 K, with slightly better fits at high temperature, contrary to the temperature determination of 130±10 K of Geballe et al. (2003, Astrophys. J. 583, L39). The HCN emission spectrum is sensitive to the collisional de-excitation probability, P10, for the ν3 state and we determine a value of 10−5 with an accuracy of about a factor of two. Analysis of absorption lines in the C2H2ν3 band near 3 μm, detected in the same spectrum, indicate a C2H2 mole fraction near 0.01 μbar of 10−5 for P10=10−4. The derived mole fraction, however, is dependent upon the value adopted for P10 and lower values are required if P10 at Titan temperatures is less than its room temperature value.  相似文献   

18.
The first radial velocity curves for BS Vul have been obtained. Combined with new light curve data, simultaneous Roche-based light curve analyses have been carried out using the 2003 version of the Wilson-Devinney code. New values for the masses, radii, and luminosities have been obtained: M1 = 2.03 (8) M ʘ, M 2 = 0.68 (3) M ʘ, R1 = 1.71 (2) Rʘ, R2 = 1.03 (2) Rʘ, L1 = 5.4 (5) L ʘ, and L 2 = 0.41 (4) L ʘ. Comparison with re-modelled data from De Bernardi and Skaltriti (1979) revealed good agreement although temperature T2 there seemed to be significantly lower. There was also reasonable agreement with the results from the photometric analysis of Zhu et al. (2012). Reference to the sample of close binary stars from Yakut and Eggleton (2005) and the ZAMS suggests that both stars are evolved.  相似文献   

19.
In July 1994, the Shoemaker-Levy 9 (SL9) impacts introduced hydrogen cyanide (HCN) to Jupiter at a well confined latitude band around −44°, over a range of specific longitudes corresponding to each of the 21 fragments (Bézard et al. 1997, Icarus 125, 94-120). This newcomer to Jupiter's stratosphere traces jovian dynamics. HCN rapidly mixed with longitude, so that observations recorded later than several months after impact witnessed primarily the meridional transport of HCN north and south of the impact latitude band. We report spatially resolved spectroscopy of HCN emission 10 months and 6 years following the impacts. We detect a total mass of HCN in Jupiter's stratosphere of 1.5±0.7×1013 g in 1995 and 1.7±0.4×1013 g in 2000, comparable to that observed several days following the impacts (Bézard et al. 1997, Icarus 125, 94-120). In 1995, 10 months after impact, HCN spread to −30° and −65° latitude (half column masses), consistent with a horizontal eddy diffusion coefficient of Kyy=2-3×1010 cm2 s−1. Six years following impact HCN is observed in the northern hemisphere, while still being concentrated at 44° south latitude. Our meridional distribution of HCN suggests that mixing occurred rapidly north of the equator, with Kyy=2-5×1011 cm2 s−1, consistent with the findings of Moreno et al. (2003, Planet. Space Sci. 51, 591-611) and Lellouch et al. (2002, Icarus 159, 112-131). These inferred eddy diffusion coefficients for Jupiter's stratosphere at 0.1-0.5 mbar generally exceed those that characterize transport on Earth. The low abundance of HCN detected at high latitudes suggests that, like on Earth, polar regions are dynamically isolated from lower latitudes.  相似文献   

20.
Hubble Space Telescope/Wide Field and Planetary Camera 2 (HST/WFPC2) images of Io obtained between 1995 and 2007 between 0.24 and 0.42 μm led to the detection of the Pele plume in reflected sunlight in 1995 and 1999; imaging of the Pele plume via absorption of jovian light in 1996 and 1999; detection of the Prometheus-type Pillan plume in reflected sunlight in 1997; and detection of the 2007 Pele-type Tvashtar plume eruption in reflected sunlight and via absorption of jovian light. Based on a detailed analysis of these observations we characterize and compare the gas and dust properties of each of the detected plumes. In each case, the brightness of the plumes in reflected sunlight is less at 0.26 μm than at 0.33 μm. Mie scattering analysis of the wavelength dependence of each plume’s reflectance signature suggests that range of particle sizes within the plumes is quite narrow. Assuming a normal distribution of particle sizes, the range of mean particle sizes is ~0.035–0.12 μm for the 1997 Pillan eruption, ~0.05–0.08 μm for the 1999 Pele and 2007 Tvasthar plumes, and ~0.05–0.11 μm for the 1995 Pele plume, and in each case the standard deviation in the particle size distribution is <15%. The Mie analysis also suggests that the 2007 Tvashtar eruption released ~109 g of sulfur dust, the 1999 Pele eruption released ~109 g of SO2 dust, the 1997 Pillan eruption released ~1010 g of SO2 dust, and the 1995 Pele plume may have released ~1010 g of SO2 dust. Analysis of the plume absorption signatures recorded in the F255W filter bandpass (0.24–0.28 μm) indicates that the opacity of the 2007 Tvashtar plume was 2× that of the 1996 and 1999 Pele plume eruptions. While the sulfur dust density estimated for the Tvashtar from the reflected sunlight data could have produced 61% of the observed plume opacity, <10% of the 1999 Pele F255W plume opacity could have resulted from the SO2 dust detected in the eruption. Accounting for the remaining F255W opacity level of the Pele and Tvasthar plumes based on SO2 and S2 gas absorption, the SO2 and S2 gas density inferred for each plume is almost equivalent corresponding to ~2–6 × 1016 cm?2 and 3–5 × 1015 cm?2, respectively, producing SO2 and S2 gas resurfacing rates ~0.04–0.2 cm yr?1 and 0.007–0.01 cm yr?1; and SO2 and S2 gas masses ~1–4 × 1010 g and ~2–3 × 109 g; for a total dust to gas ratio in the plumes ~10?1–10?2. The 2007 Tvashtar plume was detected by HST at ~380 ± 40 km in both reflected sunlight and absorbed jovian light; in 1999, the detected Pele plume altitude was 500 km in absorbed jovian light, but in reflected sunlight the detected height was ~2× lower. Thus, for the 1999 Pele plume, similar to the 1979 Voyager Pele plume observations, the most efficient dust reflections occurred in the region closest to the plume vent. The 0.33–0.42 μm brightness of the 1997 Pillan plume was 10–20× greater than the Pele or Tvashtar plumes, exceeding by a factor of 3 the average brightness levels observed within 200 km of 1979 Loki eruption vent. But, the 0.26 μm brightness of the 1997 Pillan plume in reflected sunlight was significantly lower than would be predicted by the dust scattering model. Presuming that the 0.26 μm brightness of the 1997 Pillan plume was attenuated by the eruption plume’s gas component, then an SO2 gas density ~3–6 × 1018 cm?2 is inferred from the data (for S2/SO2 ratios ?4%), comparable to the 0.3–2 × 1018 cm?2 SO2 density detected at Loki in 1979 (Pearl, J.C. et al. [1979]. Nature 280, 755; Lellouch et al., 1992), and producing an SO2 gas mass ~3–8 × 1011 g and an SO2 resurfacing rate ~8–23 cm yr?1. These results confirm the connection between high (?1017 cm?2) SO2 gas content and plumes that scatter strongly at nearly blue wavelengths, and it validates the occurrence of high density SO2 gas eruptions on Io. Noting that the SO2 gas content inferred from a spectrum of the 2003 Pillan plume was significantly lower ~2 × 1016 cm?2 (Jessup, K.L., Spencer, J., Yelle, R. [2007]. Icarus 192, 24–40); and that the Pillan caldera was flooded with fresh SO2 frost/slush just prior to the 1997 Pillan plume eruption (Geissler, P., McEwen, A., Phillips, C., Keszthelyi, L., Spencer, J. [2004a]. Icarus 169, 29–64; Phillips, C.B. [2000]. Voyager and Galileo SSI Views of Volcanic Resurfacing on Io and the Search for Geologic Activity at Europa. Ph.D. Thesis, Univ. of Ariz., Tucson); we propose that the density of SO2 gas released by this volcano is directly linked to the local SO2 frost abundance at the time of eruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号