首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New maps of martian water vapor and hydrogen peroxide have been obtained in November-December 2005, using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infra Red Telescope facility (IRTF) at Mauna Kea Observatory. The solar longitude Ls was 332° (end of southern summer). Data have been obtained at 1235-1243 cm−1, with a spectral resolution of 0.016 cm−1 (R=8×104). The mean water vapor mixing ratio in the region [0°-55° S; 345°-45° W], at the evening limb, is 150±50 ppm (corresponding to a column density of 8.3±2.8 pr-μm). The mean water vapor abundance derived from our measurements is in global overall agreement with the TES and Mars Express results, as well as the GCM models, however its spatial distribution looks different from the GCM predictions, with evidence for an enhancement at low latitudes toward the evening side. The inferred mean H2O2 abundance is 15±10 ppb, which is significantly lower than the June 2003 result [Encrenaz, T., Bézard, B., Greathouse, T.K., Richter, M.J., Lacy, J.H., Atreya, S.K., Wong, A.S., Lebonnois, S., Lefèvre, F., Forget, F., 2004. Icarus 170, 424-429] and lower than expected from the photochemical models, taking in account the change in season. Its spatial distribution shows some similarities with the map predicted by the GCM but the discrepancy in the H2O2 abundance remains to be understood and modeled.  相似文献   

2.
High-resolution infrared imaging spectroscopy of Mars has been achieved at the NASA Infrared Telescope Facility (IRTF) on June 19-21, 2003, using the Texas Echelon Cross Echelle Spectrograph (TEXES). The areocentric longitude was 206°. Following the detection and mapping of hydrogen peroxide H2O2 [Encrenaz et al., 2004. Icarus 170, 424-429], we have derived, using the same data set, a map of the water vapor abundance. The results appear in good overall agreement with the TES results and with the predictions of the Global Circulation Model (GCM) developed at the Laboratory of Dynamical Meteorology (LMD), with a maximum abundance of water vapor of 3±1.5×10−4(17±9 pr-μm). We have searched for CH4 over the martian disk, but were unable to detect it. Our upper limits are consistent with earlier reports on the methane abundance on Mars. Finally, we have obtained new measurements of CO2 isotopic ratios in Mars. As compared to the terrestrial values, these values are: (18O/17O)[M/E] = 1.03 ± 0.09; (13C/12C)[M/E] = 1.00 ± 0.11. In conclusion, in contrast with the analysis of Krasnopolsky et al. [1996. Icarus 124, 553-568], we conclude that the derived martian isotopic ratios do not show evidence for a departure from their terrestrial values.  相似文献   

3.
The condensing CO2 south polar cap of Mars and the mechanisms of the CO2 ice accumulation have been studied through the analysis of spectra acquired by the Planetary Fourier Spectrometer (PFS) during the first two years of ESA's Mars Express (MEX) mission. This dataset spans more than half a martian year, from Ls∼330° to Ls∼194°, and includes the southern fall season which is found to be extremely important for the study of the residual south polar cap asymmetry. The cap expands symmetrically and with constant speed during the fall season. The maximum extension occurs sometime in the 80°-90° Ls range, when the cap edges are as low as −40° latitude. Inside Hellas and Argyre basins, frost can be stable at lower latitudes due to the higher pressure values, causing the seasonal cap to be asymmetric. Within the seasonal range considered in this paper, the cap edge recession rate is approximately half the rate at which the cap edge expanded. The longitudinal asymmetries reduce during the cap retreat, and disappear around Ls∼145°. Two different mechanisms are responsible for CO2 ice accumulation during the fall season, especially in the 50°-70° Ls range. Here, CO2 condensation in the atmosphere, and thus precipitation, is allowed exclusively in the western hemisphere, and particularly in the longitudinal corridor of the perennial cap. In the eastern hemisphere, the cap consists mainly of CO2 frost deposits, as a consequence of direct vapor deposition. The differences in the nature of the surface ice deposits are the main cause for the residual south polar cap asymmetry. Results from selected PFS orbits have also been compared with the results provided by the martian general circulation model (GCM) of the Laboratoire de Météorologie dynamique (LMD) in Paris, with the aim of putting the observations in the context of the global circulation. This first attempt of cross-validation between PFS measurements and the LMD GCM on the one hand confirms the interpretation of the observations, and on the other hand shows that the climate modeling during the southern polar night on Mars is extremely sensitive to the dynamical forcing.  相似文献   

4.
Mars was observed near the peak of the strongest SO2 band at 1364-1373 cm−1 with resolving power of 77,000 using the Texas Echelon Cross Echelle Spectrograph on the NASA Infrared Telescope Facility. The observation covered the Tharsis volcano region which may be preferable to search for SO2. The spectrum shows absorption lines of three CO2 isotopomers and three H2O isotopomers. The water vapor abundance derived from the HDO lines assuming D/H = 5.5 times the terrestrial value is 12±1.0 pr. μm, in agreement with the simultaneous MGS/TES observations of 14 pr. μm at the latitudes (50° S to 10° N) of our observation. Summing of spectral intervals at the expected positions of sixteen SO2 lines puts a 2σ upper limit on SO2 of 1 ppb. SO2 may be emitted into the martian atmosphere by seepage and is removed by three-body reactions with OH and O. The SO2 lifetime, 2 years, is longer than the global mixing time 0.5 year, so SO2 should be rather uniformly distributed across Mars. Seepage of SO2 is less than 15,000 tons per year on Mars which is smaller than the volcanic production of SO2 on the Earth by a factor of 700. Because CH4/SO2 is typically 10−4-10−3 in volcanic gases on the Earth, our results show seepage is unlikely to be the source of the recently discovered methane on Mars and therefore strengthen its biogenic origin.  相似文献   

5.
There is a significant progress in the observational data relevant to Mars photochemistry in the current decade. These data are not covered by and sometimes disagree with the published models. Therefore we consider three types of models for Mars photochemistry. A steady-state model for global-mean conditions is currently the only way to calculate the abundances of long living species (H2, O2, and CO). However, our model does not fit the observed CO abundance using gas-phase chemistry and reasonable values of heterogeneous loss of odd hydrogen on the water ice aerosol. The second type of the calculated models is steady-state models for local conditions. The MGS/TES data on temperature profiles, H2O, and dust are input parameters for these models. The calculations have been made for nine seasonal points spread over the martian year and for twelve latitudes with a step of 10° for each season. The only adopted heterogeneous reaction is a weak loss of H2O2 on water ice with probability of 5×10−4. The results are in good agreement with the recent observations of the O2 dayglow at 1.27 μm and the O3 and H2O2 abundances. Global maps of the seasonal and latitudinal behavior of these species have been made. The third type of models is a time-dependent model for local conditions. These models show that odd hydrogen quickly converts to H2O2 at the nighttime and the chemistry is switched off while the association of O, the heterogeneous loss of H2O2, and eddy diffusion continue. This requires significant changes in the global-mean and local steady-state models discussed above, and these changes have been properly done. The calculated diurnal variations of Mars photochemistry are discussed. The martian photochemistry at low and middle latitudes is significantly different in the aphelion period at LS=10°-130° from that in the remaining part of the year.  相似文献   

6.
Michael D Smith 《Icarus》2004,167(1):148-165
We use infrared spectra returned by the Mars Global Surveyor Thermal Emission Spectrometer (TES) to retrieve atmospheric and surface temperature, dust and water ice aerosol optical depth, and water vapor column abundance. The data presented here span more than two martian years (Mars Year 24, Ls=104°, 1 March 1999 to Mars Year 26, Ls=180°, 4 May 2003). We present an overview of the seasonal (Ls), latitudinal, and longitudinal dependence of atmospheric quantities during this period, as well as an initial assessment of the interannual variability in the current martian climate. We find that the perihelion season (Ls=180°-360°) is relatively warm, dusty, free of water ice clouds, and shows a relatively high degree of interannual variability in dust optical depth and atmospheric temperature. On the other hand, the aphelion season (Ls=0°-180°) is relatively cool, cloudy, free of dust, and shows a low degree of interannual variability. Water vapor abundance shows a moderate amount of interannual variability at all seasons, but the most in the perihelion season. Much of the small amount of interannual variability that is observed in the aphelion season appears to be caused by perihelion-season planet-encircling dust storms. These dust storms increase albedo through deposition of bright dust on the surface causing cooler daytime surface and atmospheric temperatures well after dust optical depth returns to prestorm values.  相似文献   

7.
Our ground-based measurements of martian atmospheric water vapor, made throughout Ls=34° to 249°, 24 September 1998 to 23 November 1999, during Mars year 24 (MY 24), show changes in Mars' humidity on hourly, daily, and seasonal timescales. We made concomitant measurement of nearby CO2 bands, and when possible, results were corrected for aerosol extinction using aerosol optical depths derived from our own CO2 analysis. Where there is spatial and temporal overlap, similar results are obtained for water vapor abundances and aerosol opacities as those observed from the Thermal Emission Spectrometer on Mars Global Surveyor. In addition some further discussion of our published earlier water vapor measurements (1991-1995) is included. Six results from this data set are: (1) the measured aerosol opacity in Mars atmosphere was variable but not greater than τ=1, with almost no clear atmosphere being observed, (2) measurements made with the slit crossing many hours of local time on Mars' Earth-facing disk show a diurnal pattern with highest abundances at mid-day and low abundance in very early morning and late afternoon for some but not all measurements, (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends seen by instrumentation on the Mars Atmospheric Water Detector on the Viking Orbiters and by the Thermal Emission Spectrometer on Mars Global Surveyor, (4) there is a slight longitudinal correlation with the ground-ice observed by the Gamma Ray Spectrometer on Mars Odyssey, (5) there is evidence of the Low Southern Latitude Summer Minimum in our water vapor measurements but our data set for southern summer is limited, and (6) MY 24 appears to be wetter than MY 22 and MY 23.  相似文献   

8.
Measurements of martian atmospheric water vapor made throughout Ls = 18.0°-146.4° (October 3, 1996-July 12, 1997) show changes in Mars humidity on hourly, daily, and seasonal time scales. Because our observing program during the 1996-1997 Mars apparition did not include concomitant measurement of nearby CO2 bands, high northern latitude data were corrected for dust and aerosol extinction assuming an optical depth of 0.8, consistent with ground-based and HST imaging of northern dust storms. All other measurements with airmass greater than 3.5 were corrected using a total optical depth of 0.5. Three dominant results from this data set are as follows: (1) pre- and post-opposition measurements made with the slit crossing many hours of local time on Mars’ Earth-facing disk show a distinct diurnal pattern with highest abundances around and slightly after noon with low abundances in the late afternoon, (2) measurements of water vapor over the Mars Pathfinder landing site (Carl Sagan Memorial Station) on July 12, 1997, found 21 ppt μm in the spatial sector centered near 19° latitude, 36° longitude while abundances around the site varied from as low as 6 to as high as 28 ppt μm, and (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends.  相似文献   

9.
The O2 dayglow at 1.27 μm is formed by high-altitude ozone on Mars and is a sensitive tracer of Mars photochemistry. Mapping of this dayglow using the IRTF/CSHELL long-slit spectrograph requires the extraction of weak emission lines against a strong continuum of the reflected solar light. Some new tools are suggested to improve the data processing. The observed O2 dayglow intensities at LS=67°, 112°, 148°, and 173° show a decrease from late spring (aphelion) to fall equinox by a factor of ≈5 at low latitudes (±30°). This decrease agrees with that predicted by a model of Clancy and Nair (1996, J. Geophys. Res. 101 (12) 12785-12790), although the dayglow intensities are weaker than those based on that model. The measured dayglow variations with latitude are rather low at LS=67°, 112°, and 148° and unexpectedly high at 173°. The dayglow intensity peaks near noon and is smaller at 9:00 and 16:30 LT by a factor of 2. Some data on the ozone profile near aphelion are obtained from a combination of the dayglow and ozone observations. It is hardly possible to detect the O2 night airglow at 1.27 μm on Mars using the existing ground-based and on-orbit instruments. The O2 dayglow intensity as a function of latitude and season from aphelion to fall equinox has been obtained. Our goal is to extend this distribution to the full martian year and get a database for Mars photochemistry to complement the MGS/TES observations of water vapor, atmospheric temperature, and dust and ice aerosol.  相似文献   

10.
The infrared AOTF spectrometer is a part of the SPICAM experiment onboard the Mars-Express ESA mission. The instrument has a capability of solar occultations and operates in the spectral range of 1-1.7 μm with a spectral resolution of ∼3.5 cm−1. We report results from 24 orbits obtained during MY28 at Ls 130°-160°, and the latitude range of 40°-55° N. For these orbits the atmospheric density from 1.43 μm CO2 band, water vapor mixing ratio based on 1.38 μm absorption, and aerosol opacities were retrieved simultaneously. The vertical resolution of measurements is better than 3.5 km. Aerosol vertical extinction profiles were obtained at 10 wavelengths in the altitude range from 10 to 60 km. The interpretation using Mie scattering theory with adopted refraction indices of dust and H2O ice allows to retrieve particle size (reff∼0.5-1 μm) and number density (∼1 cm−3 at 15-30 km) profiles. The haze top is generally below 40 km, except the longitude range of 320°-50° E, where high-altitude clouds at 50-60 km were detected. Optical properties of these clouds are compatible with ice particles (effective radius reff=0.1-0.3 μm, number density N∼10 cm−3) distributed with variance νeff=0.1-0.2 μm. The vertical optical depth of the clouds is below 0.001 at 1 μm. The atmospheric density profiles are retrieved from CO2 band in the altitude range of 10-90 km, and H2O mixing ratio is determined at 15-50 km. Unless a supersaturation of the water vapor occurs in the martian atmosphere, the H2O mixing ratio indicates ∼5 K warmer atmosphere at 25-45 km than predicted by models.  相似文献   

11.
Steven W. Ruff 《Icarus》2004,168(1):131-143
Spectral features observed in Mars Global Surveyor Thermal Emission Spectrometer data (∼1670-220 cm−1) of martian surface dust provide clues to its mineralogy. An emissivity peak at ∼1630 cm−1 is consistent with the presence of an H2O-bearing mineral. This spectral feature can be mapped globally and shows a distribution related to the classical bright regions on Mars that are known to be dust covered. An important spectral feature at ∼830 cm−1 present in a newly derived average spectrum of surface dust likely is a transparency feature arising from the fine particulate nature of the dust. Its shape and location are consistent with plagioclase feldspars and also zeolites, which essentially are the hydrous form of feldspar. The generally favored visible/near-infrared spectral analog for martian dust, JSC Mars-1 altered tephra, does not display the ∼830 cm−1 feature. Zeolites commonly form from the interaction of low temperature aqueous fluids and volcanic glass in a variety of geologic settings. The combination of spectral features that are consistent with zeolites and the likelihood that Mars has (or had) geologic conditions necessary to produce them makes a strong case for recognizing zeolite minerals as likely components of the martian regolith.  相似文献   

12.
Fifteen organic and three inorganic compounds were tested for methane (CH4) evolution under simulated martian conditions of 6.9 mbar; UVC (200-280 nm) flux of 4 W m−2; 20 °C; simulated optical depth of 0.1; and a Mars gas composition of CO2 (95.3%), N2 (2.7%), Ar (1.7%), O2 (0.13%), and water vapor (0.03%). All three inorganic compounds (i.e., NaCl, CaCO3, graphite) failed to evolve methane at the minimum detection level 0.5 ppm, or above. In contrast, all organic compounds evolved methane when exposed to UV irradiation under simulated martian conditions. The polycyclic aromatic hydrocarbon, pyrene, released the most methane per unit of time at 0.175 nmol CH4 g−1 h−1, and a spectral reflectance target material used for the MER rovers and Phoenix lander released the least methane at 0.00065 nmol CH4 cm−2 h−1. Methane was also released from UV-killed bacterial endospores of Bacillus subtilis. Although all organic compounds evolved methane when irradiated with UV photons under martian conditions, the concentrations of residual organics, biogenic signature molecules, and dead microbial cells should be relatively low on the exterior surfaces of the MSL rover, and, thus, not significant sources of methane contamination. In contrast, kapton tape was found to evolve methane at the rate of 0.00165 nmol CH4 cm−2 h−1 (16.5 nmol m−2 h−1) under the UV and martian conditions tested. Although the evolution of methane from kapton tape was found to decline over time, the large amount of kapton tape used on the MSL rover (lower bound estimated at 3 m2) is likely to create a significant source of terrestrial methane contamination during the early part of the mission.  相似文献   

13.
Observations of ozone on Mars were made using the Goddard Space Flight Center's Infrared Heterodyne Spectrometer and Heterodyne Instrument for Planetary Wind and Composition at the NASA Infrared Telescope Facility. Ozone is an important observable tracer of martian photochemistry. Infrared heterodyne spectroscopy with spectral resolution ?106 is the only technique that directly measures ozone in the martian atmosphere from the surface of the Earth. Ozone column abundances down to the martian surface were acquired in seven data sets taken between 1988 and 2003 at various orbital positions (LS=40°, 74°, 102°, 115°, 202°, 208°, 291°). Ozone abundances are compared with those retrieved using ultraviolet techniques, showing good agreement. Odd hydrogen (HOX) chemistry predicts anticorrelation of ozone and water vapor abundances. Retrieved ozone abundances consistently show anticorrelation with corresponding water vapor abundances, providing strong confirmation of odd hydrogen activity. Deviation from strict anticorrelation between the observed total column densities of ozone and water vapor suggests that constituent vertical distribution is an additional, significant factor.  相似文献   

14.
Volcanism has been a major process during most of the geologic history of Mars. Based on data collected from terrestrial basaltic eruptions, we assume that the volatile content of martian lavas was typically ∼0.5 wt.% water, ∼0.7 wt.% carbon dioxide, ∼0.14 wt.% sulfur dioxide, and contained several other important volatile constituents. From the geologic record of volcanism on Mars we find that during the late Noachian and through the Amazonian volcanic degassing contributed ∼0.8 bar to the martian atmosphere. Because most of the outgassing consisted of greenhouse gases (i.e., CO2 and SO2) warmer surface temperatures resulting from volcanic eruptions may have been possible. Our estimates suggest that ∼1.1 × 1021 g (∼8 ± 1 m m−2) of juvenile water were released by volcanism; slightly more than half the amount contained in the north polar cap and atmosphere. Estimates for released CO2 (1.6 × 1021 g) suggests that a large reservoir of carbon dioxide is adsorbed in the martian regolith or alternatively ∼300 cm cm−2 of carbonates may have formed, although these materials would not occur readily in the presence of excess SO2. Up to ∼120 cm cm−2 (2.2 × 1020 g) of acid rain (H2SO4) may have precipitated onto the martian surface as the result of SO2 degassing. The hydrogen flux resulting from volcanic outgassing may help explain the martian atmospheric D/H ratio. The amount of outgassed nitrogen (∼1.3 mbar) may also be capable of explaining the martian atmospheric 15N/14N ratio. Minor gas constituents (HF, HCl, and H2S) could have formed hydroxyl salts on the surface resulting in the physical weathering of geologic materials. The amount of hydrogen fluoride emitted (1.82 × 1018 g) could be capable of dissolving a global layer of quartz sand ∼5 mm thick, possibly explaining why this mineral has not been positively identified in spectral observations. The estimates of volcanic outgassing presented here will be useful in understanding how the martian atmosphere evolved over time.  相似文献   

15.
Ozone is an important observable tracer of martian photochemistry, including odd hydrogen (HOx) species important to the chemistry and stability of the martian atmosphere. Infrared heterodyne spectroscopy with spectral resolution ?106 provides the only ground-based direct access to ozone absorption features in the martian atmosphere. Ozone abundances were measured with the Goddard Infrared Heterodyne Spectrometer and the Heterodyne Instrument for Planetary Wind and Composition at the NASA Infrared Telescope Facility on Mauna Kea, Hawai'i. Retrieved total ozone column abundances from various latitudes and orbital positions (LS=40°, 74°, 102°, 115°, 202°, 208°, 291°) are compared to those predicted by the first three-dimensional gas phase photochemical model of the martian atmosphere [Lefèvre, F., Lebonnois, S., Montmessin, F., Forget, F., 2004. J. Geophys. Res. 109, doi:10.1029/2004JE002268. E07004]. Observed and modeled ozone abundances show good agreement at all latitudes at perihelion orbital positions (LS=202°, 208°, 291°). Observed low-latitude ozone abundances are significantly higher than those predicted by the model at aphelion orbital positions (LS=40°, 74°, 115°). Heterogeneous loss of odd hydrogen onto water ice cloud particles would explain the discrepancy, as clouds are observed at low latitudes around aphelion on Mars.  相似文献   

16.
John E. Moores  Peter H. Smith 《Icarus》2011,211(2):1129-1149
A chamber was constructed to simulate the boundary between the ice table, regolith and atmosphere of Mars and to examine fractionation between H2O and HDO during sublimation under realistic martian conditions of temperature and pressure. Thirteen experimental runs were conducted with regolith overlying the ice. The thickness and characteristic grain size of the regolith layer as well as the temperature of the underlying ice was varied. From these runs, values for the effective diffusivity, taking into account the effects of adsorption, of the regolith were derived. These effective diffusivities ranged from 1.8 × 10−4 m2 s−1 to 2.2 × 10−3 m2 s−1 for bare ice and from 2.4 × 10−11 m2 s−1 to 2.0 × 10−9 m2 s−1 with an adsorptive layer present. From these, latent heats of adsorption of 8.6 ± 2.6 kJ mol−1 and 9.3 ± 2.8 kJ mol−1 were derived at ice-surface temperatures above 223 ± 8 K and 96 ± 28 kJ mol−1 and 104 ± 31 kJ mol−1 respectively for H2O and HDO were derived at colder temperatures. For temperatures below 223 K, the effective diffusivity of HDO was found to be lower than the diffusivity of H2O by 40% on average, suggesting that the regolith was adsorptively fractionating the sublimating gas with a fractionation factor of 1.96 ± 0.74. Applying these values to Mars predicts that adsorbed water on the regolith is enriched in HDO compared to the atmosphere, particularly where the regolith is colder. Based on current observations, the D/H ratio of the regolith may be as high as 21 ± 8 times VSMOW at 12°S and LS = 357° if the regolith is hydrated primarily by the atmosphere, neglecting any hydration from subsurface ice.  相似文献   

17.
The interval from Ls = 330° in Mars Year (MY) 26 until Ls = 84° in MY 27 has been used to compare and validate measurements from the Mars Global Surveyor Thermal Emission Spectrometer (TES) and the Mars Express Planetary Fourier Spectrometer (PFS). We studied differences between atmospheric temperatures observed by the two instruments. The best agreement between atmospheric temperatures was found at 50 Pa between 40°S and 40°N latitude, where differences were within ±5 K. For other atmospheric levels, differences as large as ∼25 K were observed between the two instruments at some locations. The largest temperature differences occurred mainly over the Hellas Planitia, Argyre Planitia, Tharsis and Valles Marineris regions.On this basis we report on the variability of the martian atmosphere during the 5.5 martian years of Mars climatology obtained by combining the two data sets from TES and PFS. Atmospheric temperatures at 50 Pa responded to the global-scale dust storms of MY 25 and in MY 28 raising temperatures from ∼220 K to ∼250 K during the daytime. An atmospheric temperature of ∼140 K at 50 Pa was observed poleward of 70°N during northern winter and poleward of 60°S during southern winter each year in both the PFS and TES results. Water vapor observed by the two spectrometers showed consistent seasonal and latitudinal variations.  相似文献   

18.
The detection of CH4 in the martian atmosphere, at a mixing ratio of about 10 ppb, prompted Krasnopolsky et al. [Krasnopolsky, V.A., Maillard, J.P., Owen, T.C., 2004. Icarus 172, 537-547] and Krasnopolsky [Krasnopolsky, V.A., 2006. Icarus 180, 359-367] to propose that the CH4 is of biogenic origin. Bar-Nun and Dimitrov [Bar-Nun, A., Dimitrov, V., 2006. Icarus 181, 320-322] proposed that CH4 can be formed in the martian atmosphere by photolysis of H2O in the presence of CO. We based our arguments on a clear demonstration that CH4 is formed in our experiments, and on thermodynamic equilibrium calculations, which show that CH4 formation is favored even in the presence of oxygen at a mixing ratio 1.3×10−3, as observed on Mars. In the present comment, Krasnopolsky [Krasnopolsky, V.A., 2007. Icarus, in press (this issue)] presents his arguments against the suggestion of Bar-Nun and Dimitrov [Bar-Nun, A., Dimitrov, V., 2006. Icarus 181, 320-322], based on the effect of O2 on CH4 formation, the absence of kinetic pathways for CH4 formation and on the inadequacy of thermodynamic equilibrium calculations to describe the martian atmosphere. In this rebuttal we demonstrate that experiments with molecular oxygen at a ratio of O2/CO2=(8.9-17)×10−3, exceeding the martian ratio, still form CH4. Thermodynamic equilibrium calculations replicate the experimental CH4 mixing ratio to within a factor of 1.9 and demonstrate that CH4 production is favored in the martian atmosphere, which is obviously not in thermodynamic equilibrium. Consequently, we do not find the presence of methane to be a sign of biological activity on Mars.  相似文献   

19.
Prelaunch planetary protection protocols on spacecraft are designed to reduce the numbers and diversity of viable bioloads on surfaces in order to mitigate the forward contamination of planetary surfaces. In addition, there is a growing appreciation that prelaunch spacecraft cleaning protocols will be required to reduce the levels of biogenic signature molecules on spacecraft to levels that will not compromise life-detection experiments on landers. The biogenic molecule, adenosine triphosphate (ATP) was tested for long-term stability under simulated Mars surface conditions of high UV flux, low temperature, low pressure, Mars atmosphere, and clear-sky dust loading conditions. Data on UV-induced ATP degradation rates were then extrapolated to a diversity of global conditions using a radiative transfer model for UV on Mars. The UV-induced degradation of ATP tested at 4.1 W m−2 UVC (200-280 nm), −10 °C, 7.1 mb, 95% CO2 gas composition, and an atmospheric opacity of τ=0.1 yielded a half-life for ATP of 1342 kJ m−2; or extrapolated to approximately 22 sols on equatorial Mars with an atmospheric opacity of τ=0.5. Temperature was found to moderately affect ATP degradation rates under martian conditions; tests at −80 or 20 °C yielded ATP half-lives of 2594 or 1183 kJ m−2, respectively. The ATP degradation rates reported here are over 10 orders of magnitude slower than the UV-induced biocidal rates reported in the literature on the inactivation of strongly UV-resistant bacterial spores from Bacillus pumilus SAFR-032 [Schuerger, A.C., Richards, J.T., Newcombe, D.A., Venkateswaran, K.J., 2006. Icarus 181, 52-62]. Extrapolating results to global Mars conditions, residence times for a 99% reduction of ATP on spacecraft surfaces ranged from 158 sols on Sun-exposed surfaces to approximately 32,000 sols for the undersides of landers similar to Viking. However, spacecraft materials greatly affected the survival times of ATP under martian conditions. Stainless steel was found to enhance the UV degradation of ATP by over 2 orders of magnitude compared to ATP-doped iridited aluminum, graphite, and astroquartz coupons. Extrapolating these results to global conditions, ATP on stainless steel might be expected to persist between 2 and 320 sols for upper and lower surfaces of landers. Liquid chromatography-mass spectrometry data supported the conclusion that UV irradiation acted to remove the γ-phosphate group from ATP, and no evidence was observed for the UV-degradation of d-ribose or adenine moieties. Long residence times for ATP on spacecraft materials under martian conditions suggest that prelaunch cleaning protocols may need to be strengthened to mitigate against possible ATP contamination of life-detection experiments on Mars landers.  相似文献   

20.
We used MGS-MOC and MRO-MARCI daily mapping images of the North Polar Region of Mars from 16 August 2005 (Ls = 270°) to 21 May 2009 (Ls = 270°), covering portions of three consecutive martian years (MY 27-MY 29), to observe the seasonal behavior of the polar ice cap and atmospheric phenomena. The rate of cap regression was similar in MY 28 and MY 29, but was advanced by 3.5° of Ls (∼7-8 sols) in MY 29. The spatial and temporal behaviors of dust and condensate clouds were similar in the two years and generally in accord with prior years. Dust storms (>100 km2) were observed in all seasons, with peak activity occurring at Ls = 10-20° from 50°N to 70°N and at Ls = 135-140° from 70°N to 90°N. The most active quadrant was 0-90°W in MY 28, shifting to 180-270°W in MY 29. The majority of regional storms in both years developed in longitudes from 10°W to 60°W. During late summer the larger storms obscure the North Polar Region in a cloud of dust that transitions to north polar hood condensate clouds around autumnal equinox.Changes in the distribution of perennial ice deposits, especially in Olympia Planum, were observed between the 2 years, with the MY 29 ice distribution being the most extensive observed to date. Modeling suggests that the small, bright ice patches on the residual cap are not the result of slope or elevation effects. Rather we suggest that they are the result of local meteorological effects on ice deposition. The annual darkening and brightening of peripheral areas of the residual cap around summer solstice can be explained by the sublimation of a brighter frost layer revealing an underlying darker, ice rich layer that itself either sublimes to reveal brighter material below or acts as a cold trap, attracting condensation of water vapor that brightens the surface. An alternative explanation invokes transport and deposition of dust on the surface from the cap interior, and later removal of that dust. The decrease in cap albedo and accompanying increase in near surface atmospheric stability may be related to the annual minimum of polar storm activity near northern summer solstice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号