首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the scenario in which the presence of ammonia in the bulk composition of Enceladus plays a pivotal role in its thermochemical evolution. Because ammonia reduces the melting temperature of the ice shell by 100 K below that of pure water ice, small amounts of tidal dissipation can power an “ammonia feedback” mechanism that leads to secondary differentiation of Enceladus within the ice shell. This leads to compositionally distinct zones at the base of the ice shell arranged such that a layer of lower density (and compositionally buoyant) pure water ice underlies the undifferentiated ammonia-dihydrate ice layer above. We then consider a large scale instability arising from the pure water ice layer, and use a numerical model to explore the dynamics of compositional convection within the ice shell of Enceladus. The instability of the layer can easily account for a diapir that is hemispherical in scale. As it rises to the surface, it co-advects the warm internal temperatures towards the outer layers of the satellite. This advected heat facilitates the generation of a subsurface ocean within the ice shell of Enceladus. This scenario can simultaneously account for the origin of asymmetry in surface deformation observed on Enceladus as well as two global features inferred to exist: a large density anomaly within the interior and a subsurface ocean underneath the south polar region.  相似文献   

2.
Microscopic liquid layers of water can evolve via adsorption on grain and mineral surfaces at and in the soil of the surface of Mars. The upper parts of these layers will start to freeze at temperatures clearly below the freezing point of bulk water (freezing point depression). A sandwich structure with layers of ice (top), liquid water (in between) and mineral surface (bottom) can evolve. The properties of the interfacial water (of adsorption water and premelted ice) on grain surfaces are described by a sandwich-model of a layer of liquid-like adsorption water between the adsorbing mineral surface layer and an upper ice layer. It is shown that the thickness or number of mono-layers of the interfacial water (of adsorption water and premelted ice) depends on temperature and atmospheric relative humidity. The derived equations for the sandwich model fit well to a known phenomenological relation between thickness of the liquid layer and relative humidity, and can be a tool to estimate or to determine for appropriate materials Hamaker's constant for van der Waals interactions on grains and in porous media. The curvature of grain surfaces is shown to have no remarkable effects for particles in the μm-range and larger. The application of these equations to thermo-physical conditions on Mars shows that the thickness of frost-layers, which can evolve over several hours on cooling surface parts of Mars, is typically of the order or a few tenths of one millimeter or less. This is in agreement with observations. Furthermore, an equation is derived, which relates the freezing point depression for van der Waals force governed interfacial water to the value of the Hamaker constant, to the latent heat of solidification, to the mass density of water ice, and to the thickness of the liquid-like layer. Again, this equation fits well to a known phenomenological relation between freezing point depression and thickness of the liquid-like layer. The derived equation shows that the lower limiting temperature of the liquid phase can reach about 180 K under martian conditions having an atmospheric water content of around 10 pr μm. An “Equilibrium Moisture Content” (EMC)/“Equilibrium Relative Humidity” (ERH) relation for the water content of martian soil has been derived, which relates, for equilibrium conditions, soil water content and atmospheric relative humidity. This relation indicates that the content of liquid interfacial water in the upper surface of Mars can reach up to 10% by weight and more in course of saturation during night hours, and it can be of about 2% by weight during the dry daytime hours.  相似文献   

3.
Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. The gas below the cloud base has constant mixing ratio. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. Below this ocean surface, the mixing ratio of water will be constant. A cloud base occurs when the photospheric temperature is high. For a family of ice giants with different photospheric temperatures, the cooler ice giants will have warmer cloud bases. For an ice giant with a cool enough photospheric temperature, the cloud base will exist at the critical temperature. For still cooler ice giants, ocean surfaces will result. A high mixing ratio of water in the deep interior favors a liquid ocean. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune's deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be ≈0.8 g/cm3. Such a high density is inconsistent with gravitational data obtained during the Voyager flyby. In our model, Neptune's water cloud base occurs around 660 K and 11 kbar, and the density there is consistent with Voyager gravitational data. As Neptune cools, the probability of a liquid ocean increases. Extrasolar “hot Neptunes,” which presumably migrate inward toward their parent stars, cannot harbor liquid water oceans unless they have lost almost all of the hydrogen and helium from their deep interiors.  相似文献   

4.
The proposed past eruption of liquid water on Europa and ongoing eruption of water vapor and ice on Enceladus have led to discussion about the feasibility of cracking a planetary ice shell. We use a boundary element method to model crack penetration in an ice shell subjected to tension and hydrostatic compression. We consider the presence of a region at the base of the ice shell in which the far-field extensional stresses vanish due to viscoelastic relaxation, impeding the penetration of fractures towards a subsurface ocean. The maximum extent of fracture penetration can be limited by hydrostatic pressure or by the presence of the unstressed basal layer, depending on its thickness. Our results indicate that Europa's ice shell is likely to be cracked under 1-3 MPa tension only if it is ?2.5 km thick. Enceladus' ice shell may be completely cracked if it is capable of supporting ∼1-3 MPa tension and is less than 25 km thick.  相似文献   

5.
Tidal dissipation has been suggested as the heat source for the south polar thermal anomaly on Enceladus. We find that under present-day conditions and assuming Maxwellian behavior, tidal dissipation is negligible in the silicate core. Dissipation may be significant in the ice shell if the shell is decoupled from the silicate core by a subsurface ocean. We have run a series of self-consistent convection and conduction models in 2D axisymmetric and 3D spherical geometry in which we include the spatially-variable tidal heat production. We find that in all cases, the shell removes more heat from the interior than can be produced in the core by radioactive decay, resulting in cooling of the interior and the freezing of any ocean. Under likely conditions, a 40-km thick ocean made of pure water would freeze solid on a ∼30 Ma timescale. An ocean containing other chemical components will have a lower freezing point, but even a water-ammonia eutectic composition will only prolong the freezing, not prevent it. If the eccentricity of Enceladus were higher (e?0.015) in the past, the increased dissipation in the ice shell may have been sufficient to maintain a liquid layer. We cannot therefore rule out the presence of a transient ocean, as a relic of an earlier era of greater heating. If the eccentricity is periodically pumped up, the ocean may have thickened and thinned on a similar timescale as the orbital evolution, provided the ocean never froze completely. We conclude that the current heat flux of Enceladus and any possible subsurface ocean is not in steady-state, and is the remnant of an epoch of higher eccentricity and tidal dissipation.  相似文献   

6.
Jere H. Lipps  Sarah Rieboldt 《Icarus》2005,177(2):515-527
Jupiter's moon Europa possesses an icy shell kilometers thick that may overlie a briny ocean. The inferred presence of water, tidal and volcanic energy, and nutrients suggests that Europa is potentially inhabited by some kind of life; indeed Europa is a primary target in the search for life in the Solar System although no evidence yet exists for any kind of life. The thickness of the icy crust would impose limits on life, but at least 15 broad kinds of habitats seem possible for Europa. They include several on the sea floor, at least 3 in the water column, and many in the ice itself. All of these habitats are in, or could be transported to, the icy shell where they could be exposed by geologic activity or impacts so they might be explored from the surface or orbit by future planetary missions. Taphonomic processes that transport, preserve, and expose habitats include buoyant ice removing bottom habitats and sediment to the underside of the ice, water currents depositing components of water column habitats on the ice bottom, cryovolcanoes depositing water on the surface, tidal pumping bringing water column and ice habitats to the near-surface ice, and subice freezing and diapiric action incorporating water column and bottom ice habitats into the lower parts of the icy shell. The preserved habitats could be exposed at or near the surface of Europa chiefly in newly-formed ice, tilted or rotated ice blocks, ridge debris, surface deposits, fault scarps, the sides of domes and pits, and impact craters and ejecta. Future exploration of Europa for life must consider careful targeting of sites where habitats are most likely preserved or exist close to the surface.  相似文献   

7.
Oceans in the icy Galilean satellites of Jupiter?   总被引:1,自引:0,他引:1  
Tilman Spohn  Gerald Schubert 《Icarus》2003,161(2):456-467
Equilibrium models of heat transfer by heat conduction and thermal convection show that the three satellites of Jupiter—Europa, Ganymede, and Callisto—may have internal oceans underneath ice shells tens of kilometers to more than a hundred kilometers thick. A wide range of rheology and heat transfer parameter values and present-day heat production rates have been considered. The rheology was cast in terms of a reference viscosity ν0 calculated at the melting temperature and the rate of change A of viscosity with inverse homologous temperature. The temperature dependence of the thermal conductivity k of ice I has been taken into account by calculating the average conductivity along the temperature profile. Heating rates are based on a chondritic radiogenic heating rate of 4.5 pW kg−1 but have been varied around this value over a wide range. The phase diagrams of H2O (ice I) and H2O + 5 wt% NH3 ice have been considered. The ice I models are worst-case scenarios for the existence of a subsurface liquid water ocean because ice I has the highest possible melting temperature and the highest thermal conductivity of candidate ices and the assumption of equilibrium ignores the contribution to ice shell heating from deep interior cooling. In the context of ice I models, we find that Europa is the satellite most likely to have a subsurface liquid ocean. Even with radiogenic heating alone the ocean is tens of kilometers thick in the nominal model. If tidal heating is invoked, the ocean will be much thicker and the ice shell will be a few tens of kilometers thick. Ganymede and Callisto have frozen their oceans in the nominal ice I models, but since these models represent the worst-case scenario, it is conceivable that these satellites also have oceans at the present time. The most important factor working against the existence of subsurface oceans is contamination of the outer ice shell by rock. Rock increases the density and the pressure gradient and shifts the triple point of ice I to shallower depths where the temperature is likely to be lower then the triple point temperature. According to present knowledge of ice phase diagrams, ammonia produces one of the largest reductions of the melting temperature. If we assume a bulk concentration of 5 wt% ammonia we find that all the satellites have substantial oceans. For a model of Europa heated only by radiogenic decay, the ice shell will be a few tens of kilometers thinner than in the ice I case. The underlying rock mantle will limit the depth of the ocean to 80-100 km. For Ganymede and Callisto, the ice I shell on top of the H2O-NH3 ocean will be around 60- to 80-km thick and the oceans may be 200- to 350-km deep. Previous models have suggested that efficient convection in the ice will freeze any existing ocean. The present conclusions are different mainly because they are based on a parameterization of convective heat transport in fluids with strongly temperature dependent viscosity rather than a parameterization derived from constant-viscosity convection models. The present parameterization introduces a conductive stagnant lid at the expense of the thickness of the convecting sublayer, if the latter exists at all. The stagnant lid causes the temperature in the sublayer to be warmer than in a comparable constant-viscosity convecting layer. We have further modified the parameterization to account for the strong increase in homologous temperature, and therefore decrease in viscosity, with depth along an adiabat. This modification causes even thicker stagnant lids and further elevated temperatures in the well-mixed sublayer. It is the stagnant lid and the comparatively large temperature in the sublayer that frustrates ocean freezing.  相似文献   

8.
The four Galilean satellites are thought to harbor one or even two global internal liquid layers beneath their surface layer. The iron core of Io and Ganymede is most likely (partially) liquid and also the core of Europa may be liquid. Furthermore, there are strong indications for the existence of a subsurface ocean in Europa, Ganymede, and Callisto. Here, we investigate whether libration observations can be used to prove the existence of these liquid layers and to constrain the thickness of the overlying solid layers. For Io, the presence of a small liquid core increases the libration of the mantle by a few percent with respect to an entirely solid Io and mantle libration observations could be used to determine the mantle thickness with a precision of several tens of kilometers given that the libration amplitude can be measured with a precision of 1 m. For Europa, Ganymede, and Callisto, the presence of a water ocean close to the surface increases by at least an order of magnitude the ice shell libration amplitude with respect to an entirely solid satellite. The shell libration depends essentially on the shell thickness and to a minor extent on the density difference between the ocean and the ice shell. The possible presence of a liquid core inside Europa and Ganymede has no noticeable influence on their shell libration. For a precision of several meters on the libration measurements, in agreement with the expected accuracy with the NASA/ESA EJSM orbiter mission to Europa and Ganymede, an error on the shell thickness of a few tens kilometers is expected. Therefore, libration measurements can be used to detect liquid layers such as Io’s core or water subsurface oceans in Europa, Ganymede, and Callisto and to constrain the thickness of the overlying solid surface layers.  相似文献   

9.
William B. McKinnon 《Icarus》2006,183(2):435-450
It has been argued that the dominant non-Newtonian creep mechanisms of water ice make the ice shell above Callisto's ocean, and by inference all radiogenically heated ice I shells in the outer Solar System, stable against solid-state convective overturn. Conductive heat transport and internal melting (oceans) are therefore predicted to be, or have been, widespread among midsize and larger icy satellites and Kuiper Belt objects. Alternatively, at low stresses (where non-Newtonian viscosities can be arbitrarily large), convective instabilities may arise in the diffusional creep regime for arbitrarily small temperature perturbations. For Callisto, ice viscosities are low enough that convection is expected over most of geologic time above the internal liquid layer for plausible ice grain sizes (?a few mm); the alternative for early Callisto, a conducting shell over a very deep ocean (>450 km), is not compatible with Callisto's present partially differentiated state. Moreover, if convection is occurring today, the stagnant lid would be quite thick (∼100 km) and compatible with the lack of active geology. Nevertheless, Callisto's steady-state heat flow may have fallen below the convective minimum for its ice I shell late in Solar System history. In this case convection ends, the ice shell melts back at its base, and the internal ocean widens considerably. The presence of such an ocean, of order 200 km thick, is compatible with Callisto's moment-of-inertia, but its formation would have caused an ∼0.25% radial expansion. The tectonic effects of such a late, slow expansion are not observed, so convection likely persists in Callisto, possibly subcritically. Ganymede, due to its greater size, rock fraction and full differentiation, has a substantially higher heat flow than Callisto and has not reached this tectonic end state. Titan, if differentiated, and Triton should be more similar to Ganymede in this regard. Pluto, like Callisto, may be near the tipping point for convective shutdown, but uncertainties in its size and rock fraction prevent a more definitive assessment.  相似文献   

10.
Determining whether or not Pluto possesses, or once possessed, a subsurface ocean is crucial to understanding its astrobiological potential. In this study we use a 3D convection model to investigate Pluto’s thermal and spin evolution, and the present-day observational consequences of different evolutionary pathways. We test the sensitivity of our model results to different initial temperature profiles, initial spin periods, silicate potassium concentrations and ice reference viscosities. The ice reference viscosity is the primary factor controlling whether or not an ocean develops and whether that ocean survives to the present day. In most of our models present-day Pluto consists of a convective ice shell without an ocean. However if the reference viscosity is higher than 5 × 1015 Pa s, the shell will be conductive and an ocean should be present. For the nominal potassium concentration the present-day ocean and conductive shell thickness are both about 165 km; in conductive cases an ocean will be present unless the potassium content of the silicate mantle is less than 10% of its nominal value. If Pluto never developed an ocean, predominantly extensional surface tectonics should result, and a fossil rotational bulge will be present. For the cases which possess, or once possessed, an ocean, no fossil bulge should exist. A present-day ocean implies that compressional surface stresses should dominate, perhaps with minor recent extension. An ocean that formed and then re-froze should result in a roughly equal balance between (older) compressional and (younger) extensional features. These predictions may be tested by the New Horizons mission.  相似文献   

11.
Javier Ruiz  Rosa Tejero 《Icarus》2003,162(2):362-373
Two opposing models to explain the geological features observed on Europa’s surface have been proposed. The thin-shell model states that the ice shell is only a few kilometers thick, transfers heat by conduction only, and can become locally thinner until it exposes an underlying ocean on the satellite’s surface. According to the thick-shell model, the ice shell may be several tens of kilometers thick and have a lower convective layer, above which there is a cold stagnant lid that dissipates heat by conduction. Whichever the case, from magnetic data there is strong support for the presence of a layer of salty liquid water under the ice. The present study was performed to examine whether the possibility of convection is theoretically consistent with surface heat flows of ∼100-200 mW m−2, deduced from a thin brittle lithosphere, and with the typical spacing of 15-23 km proposed for the features usually known as lenticulae. It was obtained that under Europa’s ice shell conditions convection could occur and also account for high heat flows due to tidal heating of the convective (nearly isothermal) interior, but only if the dominant water ice rheology is superplastic flow (with activation energy of 49 kJ mol−1; this is the rheology thought dominant in the warm interior of the ice shell). In this case the ice shell would be ∼15-50 km thick. Furthermore, in this scenario explaining the origin of the lenticulae related to convective processes requires ice grain size close to 1 mm and ice thickness around 15-20 km.  相似文献   

12.
Models of the internal structure of Callisto were constructed and the extent of its differentiation was determined based on geophysical information from the Galileo spacecraft (the mass, the radius, the mean density, and the moment of inertia), geochemical data (the chemical composition of meteorites), and the equations of state of water, ices, and meteoritic material. The thickness and the phase state of the water-ice shell were defined as well as the ice concentrations in the rock-ice mantle and the bulk concentration of H2O. The constraints on the density distribution in the mantle and the size of the rock-iron core were derived. We considered models of the internal structure of Callisto in which the presence of a continuous ice shell was assumed (models without ocean) and models with an internal ocean. We demonstrated that it is possible to apply three-layer models with an icy shell up to 320 km in thickness and a rock-iron core in different combinations with a rock-ice mantle. These models do not reject a two-layer structure of Callisto (an ice lithosphere plus a rock-ice mantle or a rock-ice mantle plus a rock-iron core) and a one-layer model of the satellite composed only of a rock-ice mantle with an ice concentration that is variable in depth. Taking into account the chemically bound water, the bulk content of H2O in the satellite is found to be 49–55 wt %. For the model with an internal ocean, the geophysically allowed thickness of the water-ice shell of Callisto was estimated to be 270–315 km with thicknesses of the icy crust and the underlying water layer of 135–150 and 120–180 km, respectively. The results of reconstruction of the composition and structure of the regular satellites of Jupiter allow us to conclude that they were possibly formed from material whose composition was close to ordinary L/LL chondrites at relatively low temperatures, lower than the temperature of evaporation of iron and Fe-Mg silicates.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 4, 2005, pp. 321–341.Original Russian Text Copyright © 2005 by Kuskov, Kronrod.  相似文献   

13.
Light and cold extrasolar planets such as OGLE 2005‐BLG‐390Lb, a 5.5 Earth masses planet detected via microlensing, could be frequent in the Galaxy according to some preliminary results from microlensing experiments. These planets can be frozen rocky‐ or ocean‐planet, situated beyond the snow line and, therefore, beyond the habitable zone of their system. They can nonetheless host a layer of liquid water, heated by radiogenic energy, underneath an ice shell surface for billions of years, before freezing completely. These results suggest that oceans under ice, like those suspected to be present on icy moons in the Solar system, could be a common feature of cold low‐mass extrasolar planets. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
K. Nagel 《Icarus》2004,169(2):402-412
The recently measured dimensionless moment of inertia (MoI) factor for Callisto of 0.3549±0.0042 (Anderson et al., 2001, Icarus, 153, 157-161) poses a problem: its value cannot be explained by a model in which Callisto is completely differentiated into an ice shell above a rock shell and an iron core such as its neighboring satellite Ganymede nor can it be explained by a model of a homogeneous, undifferentiated ice-rock satellite. We show that Callisto may be incompletely differentiated into an outer ice-rock shell in which the volumetric rock concentration is close to the primordial one at the surface and decreases approximately linearly with depth, an ice mantle mostly depleted of rock, and an about 1800 km rock-ice core in which the rock concentration is close to the close-packing limit. The ice-rock shell thickness depends on uncertain rheology parameters and the heat flow and can be roughly 50 to 150 km thick. We show that if Callisto accreted from a mix of metal bearing rock and ice and if the average size of the rocks was of the order of meters to tens of meters, then Callisto may have experienced a gradual, but still incomplete unmixing of the two components. An ocean in Callisto at a depth of 100-200 km is difficult to obtain if the ice is pure H2O and if the ice-rock lithosphere is 100 km or more thick; a water ocean is more plausible for ice contaminated by ammonia, methane or salts; or for pure H2O at a depth of 400-600 km.  相似文献   

15.
Ran Qin  W. Roger Buck 《Icarus》2007,189(2):595-597
We show Lee, Pappalardo, and Makris' [2005. Icarus 177, 367-379] argument that surface cracks in Europa's icy shell penetrate 3-10 times deeper in the presence of subsurface ocean is not correct. We use numerical calculations to demonstrate that there is at most 50% increase in penetration depth for a crack opening in a shell of finite thickness compared to a half-space. We also propose a simple equation based on force balances to estimate the maximum thickness of an ice shell that can be opened under tensile stress. Our calculations show that a crack can only penetrate 330-m-thick ice shell under 200 kPa far-field tensile stress and half of that if the stress is 100 kPa. But the presence of water would allow crack penetrate ∼4.0 km into the ice shell with zero porosity.  相似文献   

16.
The eruptive plumes and large heat flow (~15 GW) observed by Cassini in the South Polar Region of Enceladus may be expressions of hydrothermal activity inside Enceladus. We hypothesize that a subsurface ocean is the heat reservoir for thermal anomalies on the surface and the source of heat and chemicals necessary for the plumes. The ocean is believed to contain dissolved gases, mostly CO2 and is found to be relatively warm (~0 °C). Regular tidal forces open cracks in the icy crust above the ocean. Ocean water fills these fissures. There, the conditions are met for the upward movement of water and the dissolved gases to exsolve and form bubbles, lowering the bulk density of the water column and making the pressure at its bottom less than that at the top of the ocean. This pressure difference drives ocean water into and up the conduits toward the surface. This transportation mechanism supports the thermal anomalies and delivers heat and chemicals to the chambers from which the plumes erupt. Water enters these chambers and there its bubbles pop and loft an aerosol mist into the ullage. The exiting plume gas entrains some of these small droplets. Thus, nonvolatile chemical species in ocean water can be present in the plume particles. A CO2 equivalent-gas molar fraction of ~4 × 10?4 for the ocean is sufficient to support the circulation. A source of heat is needed to keep the ocean warm at ~0 °C (about two degrees above its freezing point). The source of heat is unknown, but our hypothesis is not dependent on any particular mechanism for producing the heat.  相似文献   

17.
Experiments have been performed to simulate the shallow ascent and surface release of water and brines under low atmospheric pressure. Atmospheric pressure was treated as an independent variable and water temperature and vapor pressure were examined as a function of total pressure variation down to low pressures. The physical and thermal responses of water to reducing pressure were monitored with pressure transducers, temperature sensors and visible imaging. Data were obtained for pure water and for solutions with dissolved NaCl or CO2. The experiments showed the pressure conditions under which the water remained liquid, underwent a rapid phase change to the gas state by boiling, and then solidified because of removal of latent heat. Liquid water is removed from phase equilibrium by decompression. Solid, liquid and gaseous water are present simultaneously, and not at the 611 Pa triple point, because dynamic interactions between the phases maintain unstable temperature gradients. After phase changes stop, the system reverts to equilibrium with its surroundings. Surface and shallow subsurface pressure conditions were simulated for Mars and the icy satellites of the outer Solar System. Freezing by evaporation in the absence of wind on Mars is shown to be unlikely for pure water at pressures greater than c. 670 Pa, and for saline solutions at pressures greater than c. 610 Pa. The physical nature of ice that forms depends on the salt content. Ice formed from saline water at pressures less than c. 610 Pa could be similar to terrestrial sea ice. Ice formed from pure water at pressures less than c. 100 Pa develops a low thermal conductivity and a ‘honeycomb’ structure created by sublimation. This ice could have a density as low as c. 450 kg m−3 and a thermal conductivity as low as 1.6 W m−1 K−1, and is highly reflective, more akin to snow than the clear ice from which it grew. The physical properties of ice formed from either pure or saline water at low pressures will act to reduce the surface temperature, and hence rate of sublimation, thereby prolonging the lifespan of any liquid water beneath.  相似文献   

18.
F. Nimmo  B. Giese 《Icarus》2005,177(2):327-340
Stereo topography of an area near Tyre impact crater, Europa, reveals chaos regions characterised by marginal cliffs and domical topography, rising to 100-200 m above the background plains. The regions contain blocks which have both rotated and tilted. We tested two models of chaos formation: a hybrid diapir model, in which chaos topography is caused by thermal or compositional buoyancy, and block motion occurs due to the presence of near-surface (1-3 km) melt; and a melt-through model, in which chaos regions are caused by melting and refreezing of the ice shell. None of the hybrid diapir models tested generate any melt within 1-3 km of the surface, owing to the low surface temperature. A model of ocean refreezing following melt-through gives effective elastic thicknesses and ice shell thicknesses of 0.1-0.3 and 0.5-2 km, respectively. However, for such low shell thicknesses the refreezing model requires implausibly large lateral density contrasts (50-100 kg m−3) to explain the elevation of the centres of the chaos regions. Although a global equilibrium ice shell thickness of ≈2 km is possible if Europa's mantle resembles that of Io, it is unclear whether local melt-through events are energetically possible. Thus, neither of the models tested here gives a completely satisfactory explanation for the formation of chaos regions. We suggest that surface extrusion of warm ice may be an important component of chaos terrain formation, and demonstrate that such extrusion is possible for likely ice parameters.  相似文献   

19.
Hauke Hussmann  Frank Sohl 《Icarus》2006,185(1):258-273
The detection of induced magnetic fields in the vicinity of the jovian satellites Europa, Ganymede, and Callisto is one of the most surprising findings of the Galileo mission to Jupiter. The observed magnetic signature cannot be generated in solid ice or in silicate rock. It rather suggests the existence of electrically conducting reservoirs of liquid water beneath the satellites' outermost icy shells that may contain even more water than all terrestrial oceans combined. The maintenance of liquid water layers is closely related to the internal structure, composition, and thermal state of the corresponding satellite interior. In this study we investigate the possibility of subsurface oceans in the medium-sized icy satellites and the largest trans-neptunian objects (TNO's). Controlling parameters for subsurface ocean formation are the radiogenic heating rate of the silicate component and the effectiveness of the heat transfer to the surface. Furthermore, the melting temperature of ice will be significantly reduced by small amounts of salts and/or incorporated volatiles such as methane and ammonia that are highly abundant in the outer Solar System. Based on the assumption that the satellites are differentiated and using an equilibrium condition between the heat production rate in the rocky cores and the heat loss through the ice shell, we find that subsurface oceans are possible on Rhea, Titania, Oberon, Triton, and Pluto and on the largest TNO's 2003 UB313, Sedna, and 2004 DW. Subsurface oceans can even exist if only small amounts of ammonia are available. The liquid subsurface reservoirs are located deeply underneath an ice-I shell of more than 100 km thickness. However, they may be indirectly detectable by their interaction with the surrounding magnetic fields and charged particles and by the magnitude of a satellite's response to tides exerted by the primary. The latter is strongly dependent on the occurrence of a subsurface ocean which provides greater flexibility to a satellite's rigid outer ice shell.  相似文献   

20.
B.J. Travis  J. Palguta  G. Schubert 《Icarus》2012,218(2):1006-1019
A whole-moon numerical model of Europa is developed to simulate its thermal history. The thermal evolution covers three phases: (i) an initial, roughly 0.5 Gyr-long period of radiogenic heating and differentiation, (ii) a long period from 0.5 Gyr to 4 Gyr with continuing radiogenic heating but no tidal dissipative heating (TDH), and (iii) a final period covering the last 0.5 Gyr until the present, during which TDH is active. Hydrothermal plumes develop after the initial period of heating and differentiation and transport heat and salt from Europa’s silicate mantle to its ice shell. We find that, even without TDH, vigorous hydrothermal convection in the rocky mantle can sustain flow in an ocean layer throughout Europa’s history. When TDH becomes active, the ice shell melts quickly to a thickness of about 20 km, leaving an ocean 80 km or more deep. Parameterized convection in the ice shell is non-uniform spatially, changes over time, and is tied to the deeper ocean–mantle dynamics. We also find that the dynamics are affected by salt concentrations. An initially non-uniform salt distribution retards plume penetration, but is homogenized over time by turbulent diffusion and time-dependent flow driven by initial thermal gradients. After homogenization, the uniformly distributed salt concentrations are no longer a major factor in controlling plume transport. Salt transport leads to the formation of a heterogeneous brine layer and salt inclusions at the bottom of the ice shell; the presence of salt in the ice shell could strongly influence convection in that layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号