首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two global issues regarding Europa are addressed by a survey of strike-slip faults. First, a common type of terrain that appears to represent convergent sites of surface removal, which may help compensate for substantial widespread dilation along tectonic bands elsewhere, thus helping resolve the problem of conserving global surface area, is identified. Second, evidence for polar wander may provide the first confirmation of that theoretically predicted phenomenon. These results, among others, come from an extensive survey of strike-slip faults over the portion of the surface where Galileo images at 200-m/pixel resolution were obtained for regional mapping purposes. The images cover two broad swaths that run from the far north to the far south, one in the leading hemisphere and the other in the trailing hemisphere. Among the faults that have been mapped are a fault 170 km long with a strike-slip offset of 83 km, the greatest yet identified on Europa, and a quasi-circular strike-slip fault that surrounds a 500-km-wide plate, which has undergone rotation as a rigid unit. Reconstruction of specific examples of strike slip reveals sites of lateral convergence. Because Europa is unique in many ways, these sites are not similar to compression features on other bodies, which may explain why they had previously been difficult to identify. The distribution of strike slip in both hemispheres, when compared with predictions of the theory of tidal walking, provides evidence for polar wander: The crust of Europa appears to have slid as a single unit relative to the spin axis, such that the site on the crust that was previously at the north rotational pole has wandered, probably during the last few million years, to a location currently in the leading hemisphere, about 30° away from the spin axis. Such polar wander probably also explains symmetry patterns in the distribution of chaotic terrain, pits, and uplift features.  相似文献   

2.
Scott T. Marshall 《Icarus》2005,177(2):341-366
Although a single model currently exists to explain the development of curved Europan cycloids, there have been no systematic studies of the range of morphologies and quantifiable geometric parameters of cycloidal features. We address variations in geometry along individual cycloid segments, characterizing differences in cusp styles and angles, and addressing the morphologic aspects of cycloid segments and cusps. In so doing, we illustrate how geometric and morphologic evidence imply a formation mechanism that differs from the existing model in several aspects. The current model states that cycloids are initiated as tensile fractures that grow in a curved path in response to rotating diurnal tidal stresses on Europa. However, the geometry of a cycloid cusp necessitates that shear stress was resolved onto the existing cycloid segment by the rotating diurnal stresses at the instant of cusp formation. Furthermore, we observe that cycloid cusps have a strikingly similar geometry to tailcracks that developed at the tips of many ridge-like strike-slip faults on Europa in response to shearing at the fault tip. We suggest that this similarity in geometries can be attributed to an identical formation mechanism whereby cycloid cusps form by a tailcracking process. We therefore present a revised, mechanically-based model for cycloid formation that retains the basic premise that crack growth is governed by diurnal stresses, but describes the development of cycloid cusps in response to resolved shear stresses at the tips of existing cycloid segments. The ratio of normal to shear stress at the time of tailcrack formation dictates the cusp angle and, over longer time periods, influences the morphologic evolution of the cycloid segment as it is repeatedly reworked by tidal stresses.  相似文献   

3.
Variations in diurnal tidal stress due to Europa’s eccentric orbit have been considered as the driver of strike-slip motion along pre-existing faults, but obliquity and physical libration have not been taken into account. The first objective of this work is to examine the effects of obliquity on the predicted global pattern of fault slip directions based on a tidal-tectonic formation model. Our second objective is to test the hypothesis that incorporating obliquity can reconcile theory and observations without requiring polar wander, which was previously invoked to explain the mismatch found between the slip directions of 192 faults on Europa and the global pattern predicted using the eccentricity-only model. We compute predictions for individual, observed faults at their current latitude, longitude, and azimuth with four different tidal models: eccentricity only, eccentricity plus obliquity, eccentricity plus physical libration, and a combination of all three effects. We then determine whether longitude migration, presumably due to non-synchronous rotation, is indicated in observed faults by repeating the comparisons with and without obliquity, this time also allowing longitude translation. We find that a tidal model including an obliquity of 1.2°, along with longitude migration, can predict the slip directions of all observed features in the survey. However, all but four faults can be fit with only 1° of obliquity so the value we find may represent the maximum departure from a lower time-averaged obliquity value. Adding physical libration to the obliquity model improves the accuracy of predictions at the current locations of the faults, but fails to predict the slip directions of six faults and requires additional degrees of freedom. The obliquity model with longitude migration is therefore our preferred model. Although the polar wander interpretation cannot be ruled out from these results alone, the obliquity model accounts for all observations with a value consistent with theoretical expectations and cycloid modeling.  相似文献   

4.
Straddling the south polar region of Saturn's moon Enceladus, the four principal “tiger stripe” fractures are a likely source of tectonic activity and plume generation. Here we investigate tidally driven stress conditions at the tiger stripe fractures through a combined analysis of shear and normal diurnal tidal stresses and accounting for additional stress at depth due to the overburden pressure. We compute Coulomb failure conditions to assess failure location, timing, and direction (right- vs left-lateral slip) throughout the Enceladus orbital cycle and explore a suite of model parameters that inhibit or promote shear failure at the tiger stripes. We find that low coefficients of friction (μf=0.1-0.2) and shallow overburden depths (z=2-4 km) permit shear failure along the tiger stripe faults, and that right- and/or left-lateral slip responses are possible. We integrate these conditions into a 3D time-dependent fault dislocation model to evaluate tectonic displacements and stress variations at depth during a tiger stripe orbital cycle. Depending on the sequence of stress accumulation and subsequent fault slip, which varies as a function of fault location and orientation, frictional coefficient, and fault depth, we estimate resolved shear stress accumulation of ∼70 kPa prior to fault failure, which produces modeled strike-slip displacements on the order of ∼0.5 m in the horizontal direction and ∼5 mm in the vertical direction per slip event. Our models also indicate that net displacements on the order of 0.1 m per orbital cycle, in both right- and left-lateral directions, are possible for particular fault geometries and frictional parameters. Tectonic activity inferred from these analyses correlates with observed plume activity and temperature anomalies at Enceladus's south polar region. Moreover, these analyses provide important details of stress accumulation and the faulting cycle for icy satellites subjected to diurnal tidal stress.  相似文献   

5.
《Planetary and Space Science》2007,55(10):1225-1245
The process of tide-driven walking, proposed as a major mechanism for strike–slip displacement on Europa, is modeled using a finite-element numerical simulation of the behavior of viscoelastic material. For material parameters that are plausible for the water ice composing Europa's crust, the simulation confirms earlier analytic results for strike–slip displacement along a crack that penetrates down to the liquid water substrate. The finite element code permits testing other cases as well. Of considerable interest is whether tidal walking can operate if a crack penetrates not to liquid but only as far as warm, relatively viscous ice. In such a case, significant displacement can be driven, but only if the threshold value of the compressive force needed to lock the fault is near the value of the overburden stress at the bottom of the crack. Such special conditions are not needed for displacement if the crack penetrates to the underlying ocean.  相似文献   

6.
Theoretical predictions of non-synchronous rotation and of polar wander on Europa have been tested by comparing tectonic features observed in Voyager and Galileo spacecraft images with tidal stresses. Evidence for non-synchronous rotation comes from studying changes in global scale lineaments formed over time, from the character of strike-slip faults, and from comparison of distinctively shaped cycloidal cracks with the longitudes at which such shapes should have formed, in theory. The study of cycloids constrains the rotation period (relative to the direction of Jupiter) to less than 250 000 years, while direct comparison of the orientation of Europa in Voyager and Galileo images shows the rotation is slow, with a period of >12 000 years. Comparison of strike-slip faults with their theoretical locations of formation provides evidence for substantial polar wander, supported by the distribution of various thermally produced features.  相似文献   

7.
the hypothesis that lineaments on Europa are fractures produced by tidal distortion and planetary volume change is examined by comparing the orientations of dark bands, triple bands, and cuspate ridges to fracture patterns predicted for tidal distortion due to orbital recession and orbital eccentricity. If short, reticulate dark band nnear the anti-Jove point are tension cracks which formed in response to tidal distortion, they could only have been produced by orbital eccentricity. Long, arcuate dark band and triple bands peripheral to the anti-Jove point orientations which suggest that they are strike-slip faults which formed in response to orbital recession. If cuspate ridges are compressional features, their orientations and distribution suggest that they formed in response to combined orbital recession and a decrease in planetary volume. Stresses due to orbital eccentricit could have produced tension cracks near the anti-Jove point only if tensile failure occurred either prior to the accumulation of orbital recession stresses or after they had relaxed. Surface fracturing, if a consequence of tidal deformation, places important constraints on the orbital evolution of Europa.  相似文献   

8.
The formation sequence of prominent ridges and other tectonic lineaments on the southern portion of the leading hemisphere of Europa is determined from cross-cutting relationships. These selected features formed fairly recently relative to most of the surface; older lineaments no longer retain clear evidence of cross-cutting. If we assume that this sequence represents the order of formation of cracks that underlie each lineament, and that the orientation of each crack was determined by tidal stress whose azimuth varies monotonically counter-clockwise with time, the azimuth must have rotated more than 740°, which would correspond to the change in tidal stress over two periods of nonsynchronous rotation (relative to the direction of Jupiter). However, that interpretation is not necessarily compelling, because the observed orientations of cross-cutting lineaments are not densely spaced over these cycles; in fact, the sequence would fit nearly as well into an arbitrary model with rotation in the opposite sense from that predicted by theory. This tectonic record may have formed over many more rotational cycles, such that typically only a few cracks form per cycle, which would be consistent with evidence from considerations of cycloidal crack patterns. Sets of cracks that cluster near certain azimuth orientations appear to be parts of globe-encircling lineament systems and may result from other effects, perhaps polar wander that occurred rapidly relative to nonsynchronous rotation.  相似文献   

9.
We present results of polarimetric observations of the Galilean satellites Io, Europa, Ganymede, and Callisto at phase angles ranging from 0.19° to 2.22°. The observations in the UBVR filters were performed using a one-channel photoelectric polarimeter attached to 70-cm telescope of the Chuguev Observation Station (Ukraine) on November 19-December 7, 2000. We have observed the polarization opposition effect for Io, Europa, and Ganymede to be a sharp secondary spike of negative polarization with an amplitude of about −0.4% centered at phase angles of 0.2°-0.7° and superimposed on the regular negative polarization branch. Although these minima for Io, Europa, and Ganymede show many similarities, they also exhibit a number of distinctions. The polarization opposition effect appears to be wavelength-dependent, at least for Europa and Ganymede. No polarization opposition effect was found for Callisto. The results obtained are discussed within the framework of different mechanisms of light scattering.  相似文献   

10.
本文在潮汐应力、构造应力、地震断层和岩石破裂滑动理论的基础上 ,建立了潮汐应力对地震断层作用的力学模式 ,该模式将潮汐应力与地震应力作用相结合 ,描述了沿地震主压应力和地震主张应力方向的附加潮汐应力对发震断层的力学作用方式 ,从而切入潮汐应力触发地震的物理机制 ,认为潮汐对地震的触发作用在实质上归结为潮汐应力对地震断层的促滑作用 ,这种促滑作用分增压型和减压型。在此模式基础上 ,对中国大陆及邻区的不同类型地震的潮汐触发性进行了研究 ,内容包括 :计算了中国及邻区一千多个地震震源处沿主压应力P轴和主张应力T轴方向的附加潮汐应力分量 ,分析了这些量对发震断层的作用方式 ,按纬度区域统计了受到潮汐应力促滑作用的发震断层类型以及它们与潮汐应力作用方式的关系 ,得到了如下结论 :受到潮汐应力促滑作用的发震断层的比例随区域纬度增加有减小趋势 ,其中 ,走滑型断层的比例在低纬区较大 ,而倾滑斜型断层的比例在中高纬度区较大 ;对整个统计区域而言 ,受增压型潮汐应力促滑作用的发震断层数比例大于受减压型潮汐应力促滑作用的发震断层 ;对不同的纬度区域 ,不同的潮汐应力作用方式与之促滑的发震断层类型也有不同的分布特征。最后 ,本文将中国及邻区受到潮汐触发作用的地震按构造应力  相似文献   

11.
Simon A. Kattenhorn 《Icarus》2002,157(2):490-506
A geologic map for the Bright Plains in the Conamara Chaos region of Europa is presented and is used to unravel a detailed fracture sequence using cross-cutting relationships and fracture mechanics principles. Fracture orientations in the Bright Plains region rotated with time, consistently in a clockwise sense. This conclusion agrees with the observations of other researchers' northern Europan hemisphere investigations and points strongly toward the fracture sequence being controlled by the effect of nonsynchronous rotation, whereby the outer ice crust of Europa rotates slightly faster than the satellite's interior. This is convincing evidence that Europa's crust has been decoupled from the interior, possibly due to the presence of a liquid ocean beneath the crust.Tidal stresses induced in the ice crust by the combined effects of nonsynchronous rotation and diurnal tidal flexing can be calculated using the assumption that the crust behaves elastically over relatively short time scales (i.e., no viscous relaxation of stresses). The fracture orientations in the Bright Plains area were compared to a global scale tidal stress field to determine the longitudes at which each fracture set developed. The fracture sequence points strongly to the Bright Plains region of the crust having rotated at least 720° (and perhaps up to 900°) with respect to the satellite's interior during the visible fracture history. This amount exceeds previously published estimates of nonsynchronous rotation. The orientations of the most recent surface fractures are incompatible with the current state of stress in the Bright Plains region, implying a period of a few thousand years since the most recent fracturing events based on existing nonsynchronous rotation rate estimates.  相似文献   

12.
A number of synchronous moons are thought to harbor water oceans beneath their outer ice shells. A subsurface ocean frictionally decouples the shell from the interior. This has led to proposals that a weak tidal or atmospheric torque might cause the shell to rotate differentially with respect to the synchronously rotating interior. Applications along these lines have been made to Europa and Titan. However, the shell is coupled to the ocean by an elastic torque. As a result of centrifugal and tidal forces, the ocean would assume an ellipsoidal shape with its long axis aligned toward the parent planet. Any displacement of the shell away from its equilibrium position would induce strains thereby increasing its elastic energy and giving rise to an elastic restoring torque. In the investigation reported on here, the elastic torque is compared with the tidal torque acting on Europa and the atmospheric torque acting on Titan.Regarding Europa, it is shown that the tidal torque is far too weak to produce stresses that could fracture the ice shell, thus refuting an idea that has been widely advocated. Instead, it is suggested that the cracks arise from time-dependent stresses due to non-hydrostatic gravity anomalies from tidally driven, episodic convection in the satellite’s interior.Two years of Cassini RADAR observations of Titan’s surface have been interpreted as implying an angular displacement of ∼0.24° relative to synchronous rotation. Compatibility of the amplitude and phase of the observed non-synchronous rotation with estimates of the atmospheric torque requires that Titan’s shell be decoupled from its interior. We find that the elastic torque balances the seasonal atmospheric torque at an angular displacement ?0.05°, effectively coupling the shell to the interior. Moreover, if Titan’s surface were spinning faster than synchronous, the tidal torque tending to restore synchronous rotation would almost certainly be larger than the atmospheric torque. There must either be a problem with the interpretation of the radar observations, or with our basic understanding of Titan’s atmosphere and/or interior.  相似文献   

13.
Julie M. Groenleer 《Icarus》2008,193(1):158-181
The original model developed to explain cycloidal cracks on Europa interprets cycloids as tensile fractures that grow in a curved path in response to the constantly rotating diurnal tidal stress field. Cusps form when a new cycloid crack segment propagates at an angle to the first in response to a rotation of the principal tidal stress orientation during a period of no crack growth. A recent revised model states that a cycloid cusp forms through the creation of a secondary fracture called a tailcrack at the tip of an existing cycloid segment during shearing motion induced by the rotating tidal stress field. As the tailcrack propagates away from the cusp, it becomes the next cycloid segment in the chain. The qualitative tailcrack model uniquely accounts for the normal and shear stresses that mechanically must resolve onto the tip of an existing cycloid segment at the instant of cusp formation. In this work, we provide a quantitative framework and test of the hitherto purely conceptual tailcrack model. We first present a relative age sequence inferred from geologic mapping of multiply cross-cutting cycloids in Europa's trailing hemisphere and place this into the context of the global stress history. The age sequence requires a cumulative minimum of 630° of shell reorientation due to nonsynchronous rotation to account for the observed range of orientations of cycloids of different ages. We determined the back-rotated longitudes of formation of two cycloid chain examples and used mathematical modeling of europan tidal stresses to show that the tailcrack model for cusp formation is not only viable, but places constraints on the overall development of a cycloid chain by controlling the timing of cusp development within Europa's orbit. For all cusps analyzed, the exact ratio of resolved shear to normal stress required to form the cusp angles by a process of tailcracking, as governed by the principles of linear elastic fracture mechanics, is produced at the tip of a shearing cycloid segment during Europa's orbit. Cusp formation occurs after the point in the orbit at which the maximum tensile principal tidal stress occurs, implying that tensile tidal stresses are not directly responsible for cusp development. Instead, cusps develop when a tailcrack forms at the tip of a cycloid segment in response to the highly perturbed stress field induced during concomitant opening and shearing at the tip of the cycloid segment.  相似文献   

14.
Jere H. Lipps  Sarah Rieboldt 《Icarus》2005,177(2):515-527
Jupiter's moon Europa possesses an icy shell kilometers thick that may overlie a briny ocean. The inferred presence of water, tidal and volcanic energy, and nutrients suggests that Europa is potentially inhabited by some kind of life; indeed Europa is a primary target in the search for life in the Solar System although no evidence yet exists for any kind of life. The thickness of the icy crust would impose limits on life, but at least 15 broad kinds of habitats seem possible for Europa. They include several on the sea floor, at least 3 in the water column, and many in the ice itself. All of these habitats are in, or could be transported to, the icy shell where they could be exposed by geologic activity or impacts so they might be explored from the surface or orbit by future planetary missions. Taphonomic processes that transport, preserve, and expose habitats include buoyant ice removing bottom habitats and sediment to the underside of the ice, water currents depositing components of water column habitats on the ice bottom, cryovolcanoes depositing water on the surface, tidal pumping bringing water column and ice habitats to the near-surface ice, and subice freezing and diapiric action incorporating water column and bottom ice habitats into the lower parts of the icy shell. The preserved habitats could be exposed at or near the surface of Europa chiefly in newly-formed ice, tilted or rotated ice blocks, ridge debris, surface deposits, fault scarps, the sides of domes and pits, and impact craters and ejecta. Future exploration of Europa for life must consider careful targeting of sites where habitats are most likely preserved or exist close to the surface.  相似文献   

15.
T.A. Hurford  A.R. Sarid  B.G. Bills 《Icarus》2009,202(1):197-215
Tectonic patterns on Europa are influenced by tidal stress. An important well-recognized component is associated with the orbital eccentricity, which produces a diurnally varying stress as Jupiter's apparent position in Europa's sky oscillates in longitude. Cycloidal lineaments seem to have formed as cracks propagated in this diurnally varying stress field. Maps of theoretical cycloid patterns capture many of the characteristics of the observed distribution on Europa. However, a few details of the observed cycloid distribution have not been reproduced by previous models. Recently, it has been shown that Europa has a finite forced obliquity, so Jupiter's apparent position in Europa's sky will also oscillate in latitude. We explore this new type of diurnal effect on cycloid formation. We find that stress from obliquity may be the key to explaining several characteristics of observed cycloids such as the shape of equator-crossing cycloids and the shift in the crack patterns in the Argadnel Regio region. All of these improvements of the fit between observation and theory seem to require Jupiter crossing Europa's equatorial plane 45° to 180° after perijove passage, suggestive of complex orbital dynamics that locks the direction of Europa's pericenter with the direction of the ascending node at the time these cycloids were formed.  相似文献   

16.
Water ice I rheology is a key factor for understanding the thermal and mechanical state of the outer shell of the icy satellites. Ice flow involves several deformation mechanisms (both Newtonian and non-Newtonian), which contribute to different extents depending on the temperature, grain size, and applied stress. In this work I analyze tidally heated and stressed equilibrium convection in the ice shell of Europa by considering a composite viscosity law which includes diffusion creep, basal slip, grain boundary sliding and dislocation creep, and. The calculations take into account the effect of tidal stresses on ice flow and use grain sizes between 0.1 and 100 mm. An Arrhenius-type relation (useful for parameterized convective models) is found then by fitting the calculated viscosity between 170 and 273 K to an exponential regression, which can be expressed in terms of pre-exponential constant and effective activation energy. I obtain convective heat flows between ~40 and ~60 mW m?2, values lower than those usually deduced (~100 mW m?2) from geological indicators of lithospheric thermal state, probably indicating heterogeneous tidal heating. On the other hand, for grain sizes larger than ~0.3 mm the thicknesses of the ice shell and convective sublayer are ~20–30 km and ~5–20 km respectively, values in good agreement with the available information for Europa. So, some fundamental geophysical characteristics of the ice shell of Europa could be arising from the properties of the composite water ice rheology.  相似文献   

17.
The ice crust of Europa probably floats over a deep liquid-water ocean, and has been continually resurfaced by tectonic and thermal processes driven by tides. Tidal working causes rotational torque, surface stress, internal heating, and orbital evolution. The stress patterns expected on such a crust due to reorientation of the tidal bulge by non-synchronous rotation and due to orbital eccentricity, which introduces periodic ('diurnal') variations in the tide, are shown as global maps. By taking into account the finite rate of crack propagation, global maps are generated of cycloidal features and other distinctive patterns, including the crack shapes characteristic of the wedges region and its antipode on the sub-Jovian hemisphere. Theoretical maps of tidal stress and cracking can be compared with observed tectonics, with the possibility of reconstructing the rotational history of the satellite.  相似文献   

18.
Cycloids, arcuate features observed on Europa’s surface, have been interpreted as tensile cracks that form in response to diurnal tidal stress caused by Europa’s orbital eccentricity. Stress from non-synchronous rotation may also contribute to tidal stress, and its influence on cycloid shapes has been investigated as well. Obliquity, fast precession, and physical libration would contribute to tidal stress but have often been neglected because they were expected to be negligibly small. However, more sophisticated analyses that include the influence of Jupiter’s other large satellites and the state of Europa’s interior indicate that perhaps these rotational parameters are large enough to alter the tidal stress field and the formation of tidally-driven fractures. We test tidal models that include obliquity, fast precession, stress due to non-synchronous rotation, and physical libration by comparing how well each model reproduces observed cycloids. To do this, we have designed and implemented an automated parameter-searching algorithm that relies on a quantitative measure of fit quality, which we use to identify the best fits to observed cycloids. We then apply statistical techniques to determine the tidal model best supported by the data. By incorporating obliquity, fits to observed southern hemisphere cycloids improve, and we can reproduce equatorial and equator-crossing cycloids. Furthermore, we find that obliquity plus physical libration is the tidal model best supported by the data. With this model, the obliquities range from 0.32° to 1.35°. The libration amplitudes are 0.72–2.44°, and the libration phases are −6.04° to 17.72° with one outlier at 84.5°. The variability in obliquity is expected if Europa’s ice shell is mechanically decoupled from the interior, and the libration amplitudes are plausible in the presence of a subsurface ocean. Indeed, the presence of a decoupling ocean may result in feedbacks that cause all of these rotational parameters to become time-variable.  相似文献   

19.
A new semi-automatic technique is presented to map and characterize tectonic features on Mars. Automatic strain estimation associated with normal faults is achieved for synthetic and real fault scarps on Mars.The application of this new technique to a small rift located in Thaumasia Planum allowed the segmentation of the rift. The defined segmentation corresponds to changes in the strikes of faults that delimitate rift areas with different architecture.The rift is formed by several pull-apart basins developed due to the reactivation of previously formed tectonic structures. The strain spatial distribution and the overall geometry are consistent with a roughly East–West left-lateral shear transfer zone between two different lithospheric blocks.  相似文献   

20.
Mikael Beuthe 《Icarus》2010,209(2):795-817
Contraction, expansion and despinning have been common in the past evolution of Solar System bodies. These processes deform the lithosphere until it breaks along faults. Their characteristic tectonic patterns have thus been sought for on all planets and large satellites with an ancient surface. While the search for despinning tectonics has not been conclusive, there is good observational evidence on several bodies for the global faulting pattern associated with contraction or expansion, though the pattern is seldom isotropic as predicted. The cause of the non-random orientation of the faults has been attributed either to regional stresses or to the combined action of contraction/expansion with another deformation (despinning, tidal deformation, reorientation). Another cause of the mismatch may be the neglect of the lithospheric thinning at the equator or at the poles due either to latitudinal variation in solar insolation or to localized tidal dissipation. Using thin elastic shells with variable thickness, I show that the equatorial thinning of the lithosphere transforms the homogeneous and isotropic fault pattern caused by contraction/expansion into a pattern of faults striking east-west, preferably formed in the equatorial region. By contrast, lithospheric thickness variations only weakly affect the despinning faulting pattern consisting of equatorial strike-slip faults and polar normal faults. If contraction is added to despinning, the despinning pattern first shifts to thrust faults striking north-south and then to thrust faults striking east-west. If the lithosphere is thinner at the poles, the tectonic pattern caused by contraction/expansion consists of faults striking north/south. I start by predicting the main characteristics of the stress pattern with symmetry arguments. I further prove that the solutions for contraction and despinning are dual if the inverse elastic thickness is limited to harmonic degree two, making it easy to determine fault orientation for combined contraction and despinning. I give two methods for solving the equations of elasticity, one numerical and the other semi-analytical. The latter method yields explicit formulas for stresses as expansions in Legendre polynomials about the solution for constant shell thickness. Though I only discuss the cases of a lithosphere thinner at the equator or at the poles, the method is applicable for any latitudinal variation of the lithospheric thickness. On Iapetus, contraction or expansion on a lithosphere thinner at the equator explains the location and orientation of the equatorial ridge. On Mercury, the combination of contraction and despinning makes possible the existence of zonal provinces of thrust faults differing in orientation (north-south or east-west), which may be relevant to the orientation of lobate scarps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号