首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Impact strength and cratering ejecta were studied for porous targets of pure ice and icy-silicate mixture in order to clarify the accumulation and destruction (shattering) condition of small icy bodies. The icy projectile impacted on the cylindrical targets with the porosity up to 55% at a velocity of 150 to 670 m/s at −10°C. The porosity dependence of the impact strength and that of the maximum ejecta velocity were measured in each type of these targets. As a result, the maximum ejecta velocity normalized by the impact velocity (Ve-max/Vi) is found to depend only on the porosity (φ), irrespective of the target type; a relationship is derived to be Ve-max/Vi=−2.17φ+1.29. The impact strength of pure ice increased with increased target porosity, but that of mixture target had an opposite trend; that is, the strength decreased with increased porosity. These porosity dependencies of the impact strength could be explained by the porosity dependence of the physical parameters such as impact pressure, pressure decay, and static strength. Finally, the accumulation of small icy bodies is discussed to show that the collisional events can be divided into three types by the porosity and the collision velocity according to our experimental results: mass loss, rubble pile formation, and regolith formation (compaction).  相似文献   

2.
Understanding the collisional behavior of ice dust aggregates at low velocity is a key to determining the formation process of small icy bodies such as icy planetesimals, comets and icy satellites, and this collisional behavior is also closely related to the energy dissipation mechanism in Saturn’s rings. We performed head-on collision experiments in air by means of free-falling centimeter-sized sintered snowballs with porosities from 44% to 80% at impact velocities from 0.44 m s?1 to 4.12 m s?1 at ?10 °C. In cases of porosity larger than 70%, impact sticking was the dominant collision outcome, while bouncing was dominant at lower porosity. Coefficients of restitution of snow in this velocity range were found to depend strongly on the porosity rather than the impact velocity and to decrease with the increase of the porosity. We successfully measured the compaction volume of snowballs after the impact, and it enabled us to estimate the dynamic compressive strength of snow with the assumption of the energy conservation between kinetic energy and work for deformation, which was found to be consistent with the upper limit of static compressive strength. The velocity dependence of coefficients of restitution of snow was analyzed using a Johnson’s model, and a diagram for collision outcomes among equal-sized sintered snowballs was successfully drawn as a function of porosity and impact velocity.  相似文献   

3.
Knowing the collisional process among small porous icy bodies in the outer solar system is a key to understanding the formation of EKBOs and the evolution of icy planetesimals. Impact experiments of sintered porous ice spheres with 40%, 50%, 60% and 70% porosity were conducted by using three types of projectiles at the impact velocity from 2.4 to 489 m/s, and we studied the effects of porosity on the collisional processes. Projectile sticking occurred at the impact velocity higher than 44 m/s for 60% porosity targets and higher than 13 m/s for 70% porosity targets. The antipodal velocity of the porous ice target increased with the increase of energy density, Q, and it increased slightly with the increase of porosity, although it was exceptionally high in cases when the projectile penetrated the target. The shattering strength of porous ice targets was found to decrease from 100 to 31 J/kg with the increase of porosity from 40% to 70%. The cumulative fragment mass distribution was found to depend on the energy density and the target porosity, and the slopes of the distribution in the small fragment region were almost flat for more porous targets. We reanalyzed the cumulative fragment mass distribution and first obtained the empirical equation showing the fragment mass distribution of porous ice targets as a function of the energy density and the porosity.  相似文献   

4.
Abstract— In order to study the catastrophic disruption of porous bodies such as asteroids and planetesimals, we conducted several impact experiments using porous gypsum spheres (porosity: 50%). We investigated the fragment mass and velocity of disrupted gypsum spheres over a wide range of specific energies from 3 times 103 J/kg to 5 times 104 J/kg. We compared the largest fragment mass (m1/Mt) and the antipodal velocity (Va) of gypsum with those of non‐porous materials such as basalt and ice. The results showed that the impact strength of gypsum was notably higher than that of the non‐porous bodies; however, the fragment velocity of gypsum was slower than that of the non‐porous bodies. This was because the micro‐pores dispersed in the gypsum spheres caused a rapid attenuation of shock pressure in them. From these results, we expect that the collisional disruption of porous bodies could be significantly different from that of non‐porous bodies.  相似文献   

5.
Numerical simulations are performed to understand the early thermal evolution and planetary scale differentiation of icy bodies with the radii in the range of 100–2500 km. These icy bodies include trans‐Neptunian objects, minor icy planets (e.g., Ceres, Pluto); the icy satellites of Jupiter, Saturn, Uranus, and Neptune; and probably the icy‐rocky cores of these planets. The decay energy of the radionuclides, 26Al, 60Fe, 40K, 235U, 238U, and 232Th, along with the impact‐induced heating during the accretion of icy bodies were taken into account to thermally evolve these planetary bodies. The simulations were performed for a wide range of initial ice and rock (dust) mass fractions of the icy bodies. Three distinct accretion scenarios were used. The sinking of the rock mass fraction in primitive water oceans produced by the substantial melting of ice could lead to planetary scale differentiation with the formation of a rocky core that is surrounded by a water ocean and an icy crust within the initial tens of millions of years of the solar system in case the planetary bodies accreted prior to the substantial decay of 26Al. However, over the course of billions of years, the heat produced due to 40K, 235U, 238U, and 232Th could have raised the temperature of the interiors of the icy bodies to the melting point of iron and silicates, thereby leading to the formation of an iron core. Our simulations indicate the presence of an iron core even at the center of icy bodies with radii ≥500 km for different ice mass fractions.  相似文献   

6.
Studies of impacts (impactor velocity about 5 km s−1) on icy targets were performed. The prime goal was to study the response of solid CO2 targets to impacts and to find the differences between the results of impacts on CO2 targets with those on H2O ice targets. The crater dimensions in CO2 ice were found to scale with impact energy, with little dependence on projectile density (which ranged from nylon to copper, i.e., 1150-8930 kg m−3). At equal temperatures, craters in CO2 ice were the same diameter as those in water ice, but were shallower and smaller in volume. In addition, the shape of the radial profiles of the craters was found to depend strongly on the type of ice and to change with impact energy. The impact speed of the data is comparable to that for impacts on many types of icy bodies in the outer Solar System (e.g., the satellites of the giant planets, the cometary nuclei and the Kuiper Belt objects), but the size and thus energy of the impactors is lower. Scaling with impact energy is demonstrated for the impacts on CO2 ice. The issue of impact disruption (rather than cratering) is discussed by analogy with that on water ice. Expressions for the critical energy density for the onset of disruption rather than cratering are established for water ice as a function of porosity and silicate content. Although the critical energy density for disruption of CO2 ice is not established, it is argued that the critical energy to disrupt a CO2 ice body will be greater than that for a (non-porous) water ice body of the similar mass.  相似文献   

7.
We have conducted a search for emissivity features in the thermal infrared spectrum of the icy satellites of Saturn, Phoebe, Iapetus, Enceladus, Tethys, and Hyperion, observed by the Composite Infrared Spectrometer (CIRS) on board the Cassini spacecraft. Despite the heterogeneity of the composition of these bodies depicted by Earth-based and Cassini/VIMS observations, the CIRS spectra of all satellites are undistinguishable from black-body spectra, with no detectable emissivity feature. However, several materials, which have been detected on the surface of the same bodies, present emissivity features in the analyzed spectral range. In particular, water ice presents features with sufficient contrast to be detected by CIRS. Here we study the physical causes of the absence of features by simulating the effects of intimate mixtures using models of directional emissivity for optically thick surfaces for different particle sizes and abundances, and porosities. The simulations include a set of materials detected on the Phoebe's surface, like water ice, hydrated silicates, and organics. We find that featureless spectra can be produced in three scenarios: (1) ice particles with large sizes, (2) mixtures of ices dominated by dark contaminants, and (3) small particles with large porosity. Constraints imposed by the NIR spectra of the satellites favors the latter scenario as the more likely explanation to the absence of emissivity features on the icy satellites of Saturn.  相似文献   

8.
Experiments of impact-generated break-up of icy and icy/mineral targets were performed. Formulae for the velocity of ejecta and for energy of disruption were fitted to the experimental data. An assumption that these formulae can be extrapolated for kilometer-size bodies enabled us to discuss the consequences of impacts on cometary nuclei and on planetesimals. It was found that the porosity of the targets as well as their composition (mineral to total mass ratio), are the crucial parameters.  相似文献   

9.
Rainer Merk  Dina Prialnik 《Icarus》2006,183(2):283-295
We have calculated the early thermal evolution of trans-neptunian objects by means of a thermal evolution code that takes into account simultaneous accretion. The set of coupled partial differential equations for 26Al radioactive heating, transformation of amorphous to crystalline ice and melting of water ice was solved numerically for small porous icy (cometary-like) bodies growing to final radii between 2 and 32 km and accreting between 20 and 44 AU. Accretion within a swarm of gravitationally interacting small bodies was calculated self-consistently with a simple accretion algorithm and thermal evolution of a typical member of the swarm was tracked in a parameter-space survey. We find that including accretion in numerical modeling of thermal evolution leads to a broad variety of thermally processed icy bodies and that the early occurrence of liquid water and extended crystalline ice interiors may be a very common phenomenon. The pristine nature of small icy bodies becomes thus restricted to a particular set of initial conditions. Generally, long-period comets should be more thermally affected than short-period ones.  相似文献   

10.
Impact experiments on porous targets consisting of sintered glass beads have been performed at different impact velocities in order to investigate the disruption impact energy threshold (also called Q) of these targets, the influence of the target compressive strength on this threshold and a scaling parameter of the degree of fragmentation that takes into account material strength. A large fraction of small bodies of our Solar System are expected to be composed of highly-porous material. Depending on their location and on the period considered during the Solar System history, these bodies collide with each other at velocities which cover a wide range of values from a few m/s to several km/s. Determining the impact response of porous bodies in both high- and low-velocity regimes is thus crucial to understand their collisional evolution over the entire Solar System history, from the early stages of planetary formation through collisional accretion at low impact velocities to the current and future stages during which impact velocities are much higher and lead to their disruption. While these problems at large scale can only be addressed directly by numerical simulations, small scale impact experiments are a necessary step which allows the understanding of the physical process itself and the determination of the small scale behavior of the material used as target. Moreover, they are crucial to validate numerical codes that can then be applied to larger scales.Sintered glass beads targets of different shapes and porosity have been built and their main material properties, in particular their compressive strength and their porosity, have been measured. The outcomes of their disruptions both at low and high impact velocities have then been analyzed.We then found that the value of Q strongly depends on the target compressive strength. Measuring the particle velocities as a function of their distance to the impact point, we first found that the attenuation rate of the stress wave in our sintered glass bead targets does not depend on the impact velocity regime. Ejecta velocities as a function of the distance from the impact point can thus be well fitted by a power law with an exponent about −2 in both velocity regimes. We then looked for a scaling parameter that can apply to both regimes. We found that the scaling parameter PI, which is related to the initial peak pressure and to the stress wave attenuation can be used to represent the outcome in a general way. Future investigations will be performed to determine whether these results can be generalized to other kinds of porous materials.  相似文献   

11.
Porosity is one of the most important physical properties in the rheology of small icy satellites composed of ice–silicate mixtures. Deformation experiments involving ice and 1 μm silica bead mixtures were conducted to clarify the effect of porosity on the flow law of ice–silica mixtures. Mixtures with silica mass contents of 0, 30, and 50 wt.% were used for the experiments, and the porosity was changed from 0% to 25% in each mixture. The temperature ranged from −10 to −20 °C, and the strain rate was changed from 1.2 × 10−6 to 4.2 × 10−4 s−1. As a result, it was found that the ice–silica mixtures deformed plastically, and that the relationship between the maximum stress, σmax, on the stress–strain curve and the applied strain rate, , could be described by the following flow law: . The mixture became softer as the porosity or silica mass content increased, and the stress exponent n and activation energy Q were independent of porosity, depending only on the silica mass content. Furthermore, the parameter A0 could be written as A0 = B(1 − ?)α, where ? is the porosity. The constants B and α also depended only on the silica mass content, and they increased with the increase in this content. The Maxwell relaxation time was calculated in order to estimate the conditions for topographic relaxation of icy satellites, and it was found that topographic relaxation occurred at temperatures higher than 160 K in the case of icy satellites with mean radii of 200 km.  相似文献   

12.
Porous internal structure is common among small bodies in the planetary systems and possible range of porosity, strength, and scale of in-homogeneity is wide. Icy agglomerates, such as icy dust aggregates in the proto-planetary disks or icy re-accumulated bodies of fragments from impact disruption beyond snow-line would have stronger bulk strength once the component particles physically connect each other due to sintering.In this study, in order to get better understanding of impact disruption process of such bodies, we first investigated the critical tensile (normal) and bending (tangential) forces to break a single neck, the connected part of the sintered particles, using sintered dimer of macro glass particles of ∼5 mm in diameter. We found that the critical tensile force is proportional to the cross-section of the neck when the neck grows sufficiently larger than the surface roughness of the original particles. We also found that smaller force is required to break a neck when the force is applied tangentially to the neck than normally applied. Then we measured the bulk tensile strength of sintered glass agglomerates consisting of 90 particles and showed that the average tensile stress to break a neck of agglomerates in static loading is consistent with the measured value for dimers.Impact experiments with velocity from 40 to 280 m/s were performed for the sintered agglomerates with ∼40% porosity, of two different bulk tensile strengths. The size ratio of the beads to the target was 0.19. The energy density required to catastrophically break the agglomerate was shown to be much less than those required for previously investigated sintered glass beads targets with ∼40% porosity, of which the size of component bead is 10−2 times smaller and the size ratio of the bead to target is also ∼10−2 times smaller than the agglomerates in this study. This is probably due to much smaller number of necks for the stress wave to travel through the agglomerates and therefore the energy dissipation at the necks is minimal. Also, the much larger fraction of the surface particles enables the particles to move more freely and thus be broken more easily. The catastrophic disruption of the agglomerates is shown to occur when the projectile kinetic energy is a few times of the total energy to break all of the necks of the agglomerates. The result implies that finer fragments from sintered agglomerates may have smaller catastrophic disruption energy threshold for shattering than other larger fragments with similar porosity and bulk tensile strength but much larger number of constituent particles. If this is the case, size-dependence of (smaller is weaker) is opposite to those usually considered for the bodies in the strength regime.  相似文献   

13.
Thermal histories of the small icy Saturnian satellites Mimas, Tethys, Dione, Rhea, and Iapetus are constructed by assuming that they formed as homogeneous ice-silicate mixtures. The models include effects of radiogenic and accretional heating, conductive and subsolidus convective heat transfer, and lithospheric growth. Accretional heating is unlikely to have melted the water ice in the interiors of these bodies and solid state creep of the predominately ice material precludes melting by radiogenic heating. Mimas is so small that its thermal evolution is essentially purely conductive; at present it is a cold, nearly isothermal body. Any subsolidus convection or thermal activity in Mimas would have been confined to a brief period in its early history and would have been due to a warm formation. The four largest satellites are big enough and contain sufficient heat-producing silicates that solid state convection beneath a rigid lithosphere is inevitable independent of initial conditions. Dione and Rhea have convective interiors for most of their thermal histories, while Tethys and Iapetus have mainly conductive thermal histories with early periods of convective 0activity. The thermal histories of the five satellites for the last 4 by are independent of initial conditions; at present they have cold, conductive interiors. The model thermal histories are qualitatively consistent with the appearances of these satellites: Mimas has an ancient heavily cratered surface, Tethys and probably Iapetus have both heavily cratered and more lightly cratered areas, and Dione and Rhea have extensively modified surfaces. Because of their similar sizes and densities, Mimas and Enceladus are expected to have similar surfaces and thermal histories, but instead Enceladus has the most modified surface of all the small icy Saturnian satellites. Our results suggest a heat source for Enceladus, in addition to radiogenic and accretional heating; tidal dissipation is a possibility. Because the water ice in these bodies does not melt, resurfacing must be accomplished by the melting of a low-melting-temperature minor component such as ammonia hydrate.  相似文献   

14.
The maximum size of impact craters on finite bodies marks the largest impact that can occur short of impact induced disruption of the body. Recently attention has started to focus on large craters on small bodies such as asteroids and rocky and icy satellites. Here the large crater on the recently imaged Asteroid (2867) Steins (with crater diameter to mean asteroid radius ratio of 0.79) is shown to follow a limit set by other similar sized bodies with moderate macroporosity (i.e. fractured asteroids). Thus whilst large, the crater size is not novel, nor does it require Steins to possess an extremely large porosity. In one of the components of the binary Asteroid (90) Antiope there is the recently reported presence of an extremely large depression, possibly a crater, with depression diameter to mean asteroid radius ratio of ∼(1.4–1.62). This is consistent with the maximum size of a crater expected from previous observations of very porous rocky bodies (i.e. rubble-pile asteroids). Finally, a relationship between crater diameter (normalised to body radius) is proposed as a function of body porosity which suggests that the doubling of porosity between fractured asteroids and rubble-pile asteroids, nearly doubles the size (D/R value) of the largest crater sustainable on a rocky body.  相似文献   

15.
As planetary embryos grow, gravitational stirring of planetesimals by embryos strongly enhances random velocities of planetesimals and makes collisions between planetesimals destructive. The resulting fragments are ground down by successive collisions. Eventually the smallest fragments are removed by the inward drift due to gas drag. Therefore, the collisional disruption depletes the planetesimal disk and inhibits embryo growth. We provide analytical formulae for the final masses of planetary embryos, taking into account planetesimal depletion due to collisional disruption. Furthermore, we perform the statistical simulations for embryo growth (which excellently reproduce results of direct N-body simulations if disruption is neglected). These analytical formulae are consistent with the outcome of our statistical simulations. Our results indicate that the final embryo mass at several AU in the minimum-mass solar nebula can reach about ∼0.1 Earth mass within 107 years. This brings another difficulty in formation of gas giant planets, which requires cores with ∼10 Earth masses for gas accretion. However, if the nebular disk is 10 times more massive than the minimum-mass solar nebula and the initial planetesimal size is larger than 100 km, as suggested by some models of planetesimal formation, the final embryo mass reaches about 10 Earth masses at 3-4 AU. The enhancement of embryos’ collisional cross sections by their atmosphere could further increase their final mass to form gas giant planets at 5-10 AU in the Solar System.  相似文献   

16.
The origin of Saturn’s inner mid-sized moons (Mimas, Enceladus, Tethys, Dione and Rhea) and Saturn’s rings is debated. Charnoz et al. [Charnoz, S., Salmon J., Crida A., 2010. Nature 465, 752–754] introduced the idea that the smallest inner moons could form from the spreading of the rings’ edge while Salmon et al. [Salmon, J., Charnoz, S., Crida, A., Brahic, A., 2010. Icarus 209, 771–785] showed that the rings could have been initially massive, and so was the ring’s progenitor itself. One may wonder if the mid-sized moons may have formed also from the debris of a massive ring progenitor, as also suggested by Canup [Canup, R., 2010. Nature 468, 943–946]. However, the process driving mid-sized moon accretion from the icy debris disks has not been investigated in details. In particular, Canup’s (2010) model does not seem able to explain the varying silicate contents of the mid-sized moons (from 6% to 57% in mass). Here, we explore the formation of large objects from a massive ice-rich ring (a few times Rhea’s mass) and describe the fundamental properties and implications of this new process. Using a hybrid computer model, we show that accretion within massive icy rings can form all mid-sized moons from Mimas to Rhea. However in order to explain their current locations, intense dissipation within Saturn (with Qp < 2000) is required. Our results are consistent with a satellite origin tied to the rings formation at least 2.5 Gy ago, both compatible with either a formation concurrent to Saturn or during the Late Heavy Bombardment. Tidal heating related to high-eccentricity post-accretional episodes may induce early geological activity. If some massive irregular chunks of silicates were initially present within the rings, they would be present today inside the satellites’ cores which would have accreted icy shells while being tidally expelled from the rings (via a heterogeneous accretion process). These moons may be either mostly icy, or, if they contain a significant amount of rock, already differentiated from the ice without the need for radiogenic heating. The resulting inner mid-sized moons may be significantly younger than the Solar System and a ∼1 Gyr formation delay is possible between Mimas and Rhea. The rings resulting from this process would evolve to a state compatible with current mass estimates of Saturn’s rings, and nearly devoid of silicates, apart from isolated silicate chunks coated with ice, interpreted as today Saturn’s rings’ propellers and ring-moons (like Pan or Daphnis).  相似文献   

17.
I.D.S. Grey 《Icarus》2004,168(2):467-474
Research on the impact cratering process on icy bodies has been largely based on the most abundant ice, water. However little is known about the influence of other relatively abundant ices such as ammonia. Accordingly, data are presented studying the influence on cratering in ammonia rich ice using spherical 1 mm diameter stainless steel projectiles at velocities of 4.8±0.5 km s−1. The ice target composition ranged from pure water ice, to solutions containing 50% ammonia and 50% water by weight. Results for crater depth, diameter, volume and depth/diameter ratio are given. The results showed that the presence of ammonia in the ice had a very strong influence on crater diameter and morphology. It was found that with only a 10% concentration of ammonia, crater diameter significantly decreased, and then at greater concentrations became independent of ammonia content. Crater depth was independent of the presence of ammonia in the ice, and the crater volume appeared to decrease as ammonia concentration increased. Between ammonia concentrations of 10 and 20% crater morphology visibly changed from wide shallow craters with a deeper central pit to craters with a smoothly increasing depth from the crater rim to centre. Thus, a small amount of ammonia within a water ice surface may have a major effect on crater morphology.  相似文献   

18.
Abstract— Two dark lithic fragments and matrix of the Krymka LL3.1 chondrite were mineralogically and chemically studied in detail. These objects are characterised by the following chemical and mineralogical characteristics, which distinguish them from the host chondrite Krymka: (1) bulk chemical analyses revealed low totals (systematically lower than 94 wt%) due to high porosity; (2) enrichment in FeO and depletion in S, MgO and SiO2 due to a high abundance of Fe‐rich silicates and low sulfide abundance; (3) fine‐grained, almost chondrule‐free texture with predominance of a porous, cryptocrystalline groundmass and fine grains; (4) occurrence of a small amount of once‐molten material (microchondrules) enclosed in fine‐grained materials; (5) occurrence of accretionary features, especially unique accretionary spherules; (6) high abundance of small calcium‐ aluminium‐rich inclusions (CAIs) in one of the fine‐grained fragments. It is suggested that the abundance of CAIs in this fragment is one of the highest ever found in an ordinary chondrite. Accretionary, fine‐grained spherules within one of the fragments bear fundamental information about the initial stages of accretion as well as on the evolution of the clast, its incorporation, and history within the bulk rock of Krymka. The differences in porosity, bulk composition, and mineralogy of cores and rims of the fine‐grained spherulitic objects allow us to speculate on the following processes: (1) Low velocity accretion of tiny silicate grains onto the surface of coarse metal or silicate grains in a dusty region of the nebula is the beginning of the formation of accretionary, porous (fluffy) silicate spherules. (2) Within a dusty environment with decreasing silicate/(metal + sulfide) ratio the porous spherules collected abundant metal and sulfide particles together with silicate dust, which formed an accretionary rim. Variations of the silicate/(sulfide + metal) ratio in the dusty nebular environment result in the formation of multi‐layered rims on the surface of the silicate‐rich spherules. (3) Soft accretion and lithification of rimmed, fluffy spherules, fine‐grained, silicate‐rich dust, metal‐sulfide particles, CAIs, silicate‐rich microchondrules, and coarse silicate grains and fragments followed. (4) After low‐temperature processing of the primary, accretionary rock collisional fragmentation occurred, the fragments were subsequently coated by fine‐grained material, which was highly oxidized and depleted in sulfides. (5) In a final stage this accretionary “dusty” rock was incorporated as a fragment within the Krymka host.  相似文献   

19.
《Icarus》1987,69(3):506-518
New results of low-velocity impact experiments in cubic and cylindrical (20 cm) water-ice targets initially at 257 and 81 °K are reported. Impact velocities and impact energies vary between 0.1 and 0.64 km/sec and 109 and 1010 ergs, respectively. Observed crater diameters range from 7 to 15 cm and are two to three times larger than values found for equal-energy impacts in basaltic targets. Crater dimensions in ice targets increase slightly with increasing target temperatures. Crater volumes of strength-controlled ice craters are about 10 to 100 times larger than those observed for craters in crystalline rocks. Based on similarity analysis, general scaling laws for strength-controlled crater formation are derived and are applied to crater formation on the icy Galilean and Saturnian satellites. This analysis indicates that surface ages, based on impact-crater statistics on an icy crust, will appear greater than those for a silicate crust which experienced the same impact history. The greater ejecta volume for cratering in ice versus cratering in silicate targets leads to accelerated regolith production on an icy planet.  相似文献   

20.
New models for the interiors of Io, Ganymede, and Callisto are proposed. The model of Io consists of a thin, high-rigidity outer layer separated from a solid interior by a thin, molten or partially molten shell. The modulus of rigidity of the outer layer must be at least 100 times larger than that of the underlying partially molten shell. These layers have thicknesses of order 100 km or less. The near-surface partially molten layer was most likely produced early in Io's history as a consequence of accretional heating; enhanced tidal heating in the outer rigid layer has kept the underlying region partially molten to the present day. The model of Ganymede consists of an ice outer layer, a shell of undifferentiated, primordial ice-silicate mixture, and a rock core. Accretional heating is responsible for melting the ice in the outer layers of Ganymede's initially homogeneous ice-silicate interior. Most of the rock in this outer layer accumulates in a shell on top of Ganymede's early cold and rigid central region; the water in the outer layer quickly refreezes. Heating of the undifferentiated region by the decay of radioactive elements in the silicate fraction would gradually warm it and reduce its viscosity. The rock layer would become gravitationally unstable and sink through the undifferentiated materials to form a rock core. Callisto's heavily cratered surface strongly suggests that relatively little, if any, ice-rock differentiation has occured in its interior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号