首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hutzell WT  McKay CP  Toon OB  Hourdin F 《Icarus》1996,119(1):112-129
We have used a 2-D microphysics model to study the effects of atmospheric motions on the albedo of Titan's thick haze layer. We compare our results to the observed variations of Titan's brightness with season and latitude. We use two wind fields; the first is a simple pole-to-pole Hadley cell that reverses twice a year. The second is based on the results of a preliminary Titan GCM. Seasonally varying wind fields, with horizontal velocities of about 1 cm sec-1 at optical depth unity, are capable of producing the observed change in geometric albedo of about 10% over the Titan year. Neither of the two wind fields can adequately reproduce the latitudinal distribution of reflectivity seen by Voyager. At visible wavelengths, where only haze opacity is important, upwelling produces darkening by increasing the particle size at optical depth unity. This is due to the suspension of larger particles as well as the lateral removal of smaller particles from the top of the atmosphere. At UV wavelengths and at 0.89 micrometers the albedo is determined by the competing effects of the gas the haze material. Gas is bright in the UV and dark at 0.89 micrometers. Haze transport at high altitudes controls the UV albedo and transport at low altitude controls the 0.89 micrometers albedo. Comparisons between the hemispheric contrast at UV, visible, and IR wavelengths can be diagnostic of the vertical structure of the wind field on Titan.  相似文献   

2.
We have reanalyzed the high-resolution spectrum of Titan between 2.87 and 3.12 μm observed with NIRSPEC/Keck II on 2001 Nov. 21 in southern summer, using updated CH3D and C2H6 line-by-line models. From new synthetic spectra, we identify all but a few of the previously unidentified significant absorption spectral features in this wavelength range as due to these two species, both of which had been previously detected by Voyager and ground-based observations at other wavelengths. We also derive opacities and reflectivities of haze particles as functions of altitude for the 2.87-2.92 μm wavelength range, where Titan's atmosphere is partially transparent down to the surface. The extinction per unit altitude is observed to increase from 100 km (∼8 mbar) toward lower altitude. The derived total optical depth is approximately 1.1 for the 2.87-2.92 μm range. At wavelengths increasing beyond 2.92 μm the haze layers become much more optically thick, and the surface is rapidly hidden from view. These conclusions apply to equatorial and southern-temperate regions on Titan, excluding polar regions. We also find it unlikely that there is a large enhancement of the tropospheric CH4 mole fraction over the value reported from analysis of the Huygens/GCMS observations.  相似文献   

3.
E. Lellouch  B. Schmitt  J.-G. Cuby 《Icarus》2004,168(1):209-214
We report on repeated mid-resolution (R∼2000) spectroscopic observations of Titan, acquired between November 2002 and January 2003 with ISAAC at the ESO/VLT and covering the 4.84-5.05 μm range. These observations, which sample four different positions of Titan around Saturn, clearly indicate a variability of the 5-μm continuum albedo, with Titan's geometric albedo decreasing by ∼40% from Titan's leading side to the trailing side. This Titan 5-μm “lightcurve” appears to be in phase with the other near-infrared lightcurves. This can be understood in terms of a surface model in which water ice coexists in minor and variable proportions (13-25%, if pure) with a second, dark, component.  相似文献   

4.
Cassini observations of the surface of Titan offer unprecedented views of its surface through atmospheric windows in the 1-5 μm region. Images obtained in windows for which the haze opacity is low can be used to derive quantitative photometric parameters such as albedo and albedo distribution, and physical properties such as roughness and particle characteristics. Images from the early Titan flybys, particularly T0, Ta, and T5 have been analyzed to create albedo maps in the 2.01 and 2.73 μm windows. We find the average normal reflectance at these two wavelengths to be 0.15±0.02 and 0.035±0.003, respectively. Titan's surface is bifurcated into two albedo regimes, particularly at 2.01 μm. Analysis of these two regimes to understand the physical character of the surface was accomplished with a macroscopic roughness model. We find that the two types of surface have substantially different roughness, with the low-albedo surface exhibiting mean slope angles of ∼18°, and the high-albedo terrain having a much more substantial roughness with a mean slope angle of ∼34°. A single-scattering phase function approximated by a one-term Henyey-Greenstein equation was also fit to each unit. Titan's surface is back-scattering (g∼0.3-0.4), and does not exhibit substantially different backscattering behavior between the two terrains. Our results suggest that two distinct geophysical domains exist on Titan: a bright region cut by deep drainage channels and a relatively smooth surface. The two terrains are covered by a film or a coating of particles perhaps precipitated from the satellite's haze layer and transported by eolian processes. Our results are preliminary: more accurate values for the surface albedo and physical parameters will be derived as more data is gathered by the Cassini spacecraft and as a more complete radiative transfer model is developed from both Cassini orbiter and Huygens Lander measurements.  相似文献   

5.
An attempt to evaluate the preliminary values of the Titan's surface albedo at 2 μm from the first Cassini-VIMS observations of the moon is presented. The methodology is based on the application of radiative transfer calculations and a microphysical model of the Titan atmosphere based on fractal aerosol. As a first guess, the surface has been considered flat and lambertian. The results are presented as a function of the geographical coordinates associated to the image pixels. The libRadtran package, using the radiative transfer equation solver DISORT 2.0, has been applied for the calculations. A test run to evaluate the model performances, using ground based observations of Titan as reference in the range of wavelengths 0.3-1.0 μm, has been carried out.The retrieved values of the surface albedo range between 0.03 and 0.22.  相似文献   

6.
The Visual and Infrared Mapping Spectrometer (VIMS) instrument on the Cassini Saturn Orbiter returned spectral imaging data as the spacecraft undertook six close encounters with Titan beginning 7 July, 2004. Three of these flybys each produced overlapping coverage of two distinct regions of Titan's surface. Twenty-four points were selected on approximately opposite hemispheres to serve as photometric controls. Six points were selected in each of four reflectance classes. On one hemisphere each control point was observed at three distinct phase angles. From the derived phase coefficients, preliminary normal reflectances were derived for each reflectance class. The normal reflectance of Titan's surface units at 2.0178 μm ranged from 0.079 to 0.185 for the most absorbing to the most reflective units assuming no contribution from absorbing haze. When a modest haze contribution of τ=0.1 is considered these numbers increase to 0.089–0.215. We find that the lowest three reflectance classes have comparable normal reflectance on either hemisphere. However, for the highest brightness class the normal reflectance is higher on the hemisphere encompassing longitude 14–65° compared to the same high brightness class for the hemisphere encompassing 122–156° longitude. We conclude that an albedo dichotomy observed in continental sized units on Titan is due not only to one unit having more areal coverage of reflective material than the other but the material on the brighter unit is intrinsically more reflective than the most reflective material on the other unit. This suggests that surface renewal processes are more widespread on Titan's more reflective units than on its less reflective units.

We note that one of our photometric control points has increased in reflectance by 12% relative to the surrounding terrain from July of 2004 to April and May of 2005. Possible causes of this effect include atmospheric processes such as ground fog or orographic clouds; the suggestion of active volcanism cannot be ruled out.

Several interesting circular features which resembled impact craters were identified on Titan's surface at the time of the initial Titan flyby in July of 2004. We traced photometric profiles through two of these candidate craters and attempted to fit these profiles to the photometric properties expected from model depressions. We find that the best-fit attempt to model these features as craters requires that they be unrealistically deep, approximately 70 km deep. We conclude that despite their appearance, these circular features are not craters, however, the possibility that they are palimpsests cannot be ruled out.

We used two methods to test for the presence of vast expanses of liquids on Titan's surface that had been suggested to resemble oceans. Specular reflection of sunlight would be indicative of widespread liquids on the surface; we found no evidence of this. A large liquid body should also show uniformity in photometric profile; we found the profiles to be highly variable. The lack of specular reflection and the high photometric variability in the profiles across candidate oceans is inconsistent with the presence of vast expanses of flat-lying liquids on Titan's surface. While liquid accumulation may be present as small, sub-pixel-sized bodies, or in areas of the surface which still remain to be observed by VIMS, the presence of large ocean-sized accumulations of liquids can be ruled out.

The Cassini orbital tour offers the opportunity for VIMS to image the same parts of Titan's surface repeatedly at many different illumination and observation geometries. This creates the possibility of understanding the properties of Titan's atmosphere and haze by iteratively adapting models to create a best fit to the surface reflectance properties.  相似文献   


7.
8.
Images of Titan acquired over five nights in October 2004 using the adaptive optics system at the Keck Observatory show dramatic increases in tropospheric cloud activity at the south pole compared with all other images of Titan clouds to date. During this time, Titan's south polar clouds brightened to more than 18 times their typical values. The Cassini Ta flyby of Titan occurred as this storm was rapidly dissipating. We find that the brightness of this cloud outburst is consistent with the dramatic transient brightening of Titan observed in atmospheric windows on two nights in 1995 by Griffith et al. [Griffith, C.A., Owen, T., Miller, G.A., Geballe, T., 1998. Nature 395 (6702) 575-578] if we scale the brightness of the cloud by projecting it onto the equator. While apparently infrequent, the fact that large cloud events have been observed in different seasons of Titan's year indicates that these large storms might be a year-round phenomenon on Titan. We propose possible mechanisms to explain these occasional short-term increases in Titan's cloud activity.  相似文献   

9.
Titan's bulk density along with Solar System formation models indicates considerable water as well as silicates as its major constituents. This satellite's dense atmosphere of nitrogen with methane is unique. Deposits or even oceans of organic compounds have been suggested to exist on Titan's solid surface due to UV-induced photochemistry in the atmosphere. Thus, the composition of the surface is a major piece of evidence needed to determine Titan's history. However, studies of the surface are hindered by the thick, absorbing, hazy and in some places cloudy atmosphere. Ground-based telescope investigations of the integral disk of Titan attempted to observe the surface albedo in spectral windows between methane absorptions by calculating and removing the haze effects. Their results were reported to be consistent with water ice on the surface that is contaminated with a small amount of dark material, perhaps organic material like tholin. We analyze here the recent Cassini Mission's visual and infrared mapping spectrometer (VIMS) observations that resolve regions on Titan. VIMS is able to see surface features and shows that there are spectral and therefore likely compositional units. By several methods, spectral albedo estimates within methane absorption windows between 0.75 and 5 μm were obtained for different surface units using VIMS image cubes from the Cassini-Huygens Titan Ta encounter. Of the spots studied, there appears to be two compositional classes present that are associated with the lower albedo and the higher albedo materials, with some variety among the brighter regions. These were compared with spectra of several different candidate materials. Our results show that the spectrum of water ice contaminated with a darker material matches the reflectance of the lower albedo Titan regions if the spectral slope from 2.71 to 2.79 μm in the poorly understood 2.8-μm methane window is ignored. The spectra for brighter regions are not matched by the spectrum of water ice or unoxidized tholin, in pure form or in mixtures with sufficient ice or tholin present to allow the water ice or tholin spectral features to be discerned. We find that the 2.8-μm methane absorption window is complex and seems to consist of two weak subwindows at 2.7 and 2.8 μm that have unknown opacities. A ratio image at these two wavelengths reveals an anomalous region on Titan that has a reflectance unlike any material so far identified, but it is unclear how much the reflectances in these two subwindows pertain to the surface.  相似文献   

10.
Toon OB  McKay CP  Griffith CA  Turco RP 《Icarus》1992,95(1):24-53
Microphysical simulations of Titan's stratospheric haze show that aerosol microphysics is linked to organized dynamical processes. The detached haze layer may be a manifestation of 1 cm sec-1 vertical velocities at altitudes above 300 km. The hemispherical asymmetry in the visible albedo may be caused by 0.05 cm sec-1 vertical velocities at altitudes of 150 to 200 km, we predict contrast reversal beyond 0.6 micrometer. Tomasko and Smith's (1982, Icarus 51, 65-95) model, in which a layer of large particles above 220 km altitude is responsible for the high forward scattering observed by Rages and Pollack (1983, Icarus 55, 50-62), is a natural outcome of the detached haze layer being produced by rising motions if aerosol mass production occurs primarily below the detached haze layer. The aerosol's electrical charge is critical for the particle size and optical depth of the haze. The geometric albedo, particularly in the ultraviolet and near infrared, requires that the particle size be near 0.15 micrometer down to altitudes below 100 km, which is consistent with polarization observations (Tomasko and Smith 1982, West and Smith 1991, Icarus 90, 330-333). Above about 400 km and below about 150 km Yung et al.'s (1984, Astrophys. J. Suppl. Ser. 55, 465-506) diffusion coefficients are too small. Dynamical processes control the haze particles below about 150 km. The relatively large eddy diffusion coefficients in the lower stratosphere result in a vertically extensive region with nonuniform mixing ratios of condensable gases, so that most hydrocarbons may condense very near the tropopause rather than tens of kilometers above it. The optical depths of hydrocarbon clouds are probably less than one, requiring that abundant gases such as ethane condense on a subset of the haze particles to create relatively large, rapidly removed particles. The wavelength dependence of the optical radius is calculated for use in analyzing observations of the geometric albedo. The lower atmosphere and surface should be visible outside of regions of methane absorption in the near infrared. Limb scans at 2.0 micrometers wavelength should be possible down to about 75 km altitude.  相似文献   

11.
Titan, the largest satellite of Saturn, has a thick nitrogen/methane atmosphere with a thick global organic haze. A laboratory analogue of Titan's haze, called tholin, was formed in an inductively coupled plasma from nitrogen/methane=90/10 gas mixture at various pressures ranging from 13 to 2300 Pa. Chemical and optical properties of the resulting tholin depend on the deposition pressure in cold plasma. Structural analyses by IR and UV/VIS spectroscopy, microprobe laser desorption/ionization mass spectrometry, and Raman spectroscopy suggest that larger amounts of aromatic ring structures with larger cluster size are formed at lower pressures (13 and 26 Pa) than at higher pressures (160 and 2300 Pa). Nitrogen is more likely to incorporate into carbon networks in tholins formed at lower pressures, while nitrogen is bonded as terminal groups at higher pressures. Elemental analysis reveals that the carbon/nitrogen ratio in tholins increases from 1.5-2 at lower pressures to 3 at 2300 Pa. The increase in the aromatic compounds and the decrease in C/N ratio in tholin formed at low pressures indicate the presence of the nitrogen-containing polycyclic aromatic compounds in tholin formed at low pressures. Tholin formed at high pressure (2300 Pa) consists of a polymer-like branched chain structure terminated with CH3, NH2, and CN with few aromatic compounds. Reddish-brown tholin films formed at low pressures (13-26 Pa) shows stronger absorptions (almost 10 times larger k-value) in the UV/VIS range than the yellowish tholin films formed at high pressures (160 and 2300 Pa). The tholins formed at low pressures may be better representations of Titan's haze than those formed at high pressures, because the optical properties of tholin formed at low pressures agree well with that of Khare et al. (1984a, Icarus 60, 127-137), which have been shown to account for Titan's observed geometric albedo. Thus, the nitrogen-containing polycyclic aromatic compounds we find in tholin formed at low pressure may be present in Titan's haze. These aromatic compounds may have a significant influence on the thermal structure and complex organic chemistry in Titan's atmosphere, because they are efficient absorbers of UV radiation and efficient charge exchange intermediaries. Our results also indicate that the haze layers at various altitudes might have different chemical and optical properties.  相似文献   

12.
Using adaptive optics on the W. M. Keck II telescope, we imaged Titan several times during 1999 to 2001 in narrowband near-infrared filters selected to probe Titan's stratosphere and upper troposphere. We observed a bright feature around the south pole, possibly a collar of haze or clouds. Further, we find that solar phase angle explains most of the observed east-west brightness asymmetry of Titan's atmosphere, although the data do not preclude the presence of a “morning fog” effect at small solar phase angle.  相似文献   

13.
We present observations of Titan taken on November 17, 2000, with the near-infrared spectro-imaging system OASIS, mounted downstream of the CFHT/PUEO adaptive optics system. We have spatially resolved Titan's disk at Greatest Eastern Elongation. Our spectra cover the 0.86- range with a spectral resolution of 1800. By studying Titan at these wavelengths, we have recovered several pieces of information on the vertical and latitudinal structure of the atmosphere and surface of the satellite. The observing conditions were sufficiently good (AO-corrected seeing of 0.34”) so as to allow us to separate the disk into 7 independent elements. From the flux contained in the methane band, we find that at higher altitudes on Titan, the North-South asymmetry is undergoing changes with respect to previous years when the South was much brighter than the North. This asymmetry still prevails in the troposphere, but at higher levels the well-known “Titan smile”—previously reported—disappears. We believe that we even have evidence for a reversal. The year 2000 may then represent the beginning of a seasonal change in Titan's haze distribution in the near-infrared, something which has been confirmed since but was not visible in the previous years. By comparing regions on Titan's disk with similar surface and stratospheric characteristics, we find an differences in the latitudinal distribution of the aerosol content in the intermediate altitude levels. Reflectivity measurements derived in the window (and hence pertaining to the surface conditions) show that the equatorial regions of the leading side are brighter than the surrounding areas, due to the presence of the large bright zone observed since 1994. Given our spatial resolution, we find this region to be 6% brighter than northern latitudes, 7% brighter than the South pole and in total we have a contrast of 9% between the darker and the brighter areas distinguishable on our images. The methane window yields a geometric albedo of about 0.26 for the bright center of Titan's disk. This region is affected by a strong H2O telluric absorption and therefore we could not derive any precise information on the surface composition from the original spectrum. We have, however, been able to correct for the telluric lines by using a stellar spectrum taken just before our Titan observations. We were then able to apply our radiative transfer code and after modeling surface albedo values of about 0.37 and 0.29 for the brightest and darkest areas respectively were found. We investigate possible surface components, compatible with our data, such as water ice, hydrocarbon liquid, tholin deposits or silicates.  相似文献   

14.
The near-infrared spectrum of Titan, Saturn's largest moon and one of the Cassini/Huygens' space mission primary targets, covers the 0.8 to 5 micron region in which it shows several weak CH4 absorption regions, and in particular one centered near 2.75 micron. Due to the interference of telluric absorption, only part of this window region (2.9-3.1 μm) has previously been observed from the ground [Noll, K.S., Geballe, T.R., Knacke, R., Pendleton, F., Yvonne, J., 1996. Icarus 124, 625-631; Griffith, C.A., Owen, T., Miller, G.A., Geballe, T., 1998. Nature 395, 575-578; Griffith, C.A., Owen, T., Geballe, T.R., Rayner, J., Rannou, P., 2003. Science 300, 628-630; Geballe, T.R., Kim, S.J., Noll, K.S., Griffith, C.A., 2003. Astrophys. J. 583, L39-L42]. We report here on the first spectroscopic observations of Titan covering the whole 2.4-4.9 μm region by two instruments on board the Infrared Space Observatory (ISO) in 1997. These observations show the 2.75-μm window in its complete extent for the first time. In this study we have also used a high-resolution Titan spectrum in the 2.9-3.6 μm region taken with the Keck [Geballe, T.R., Kim, S.J., Noll, K.S., Griffith, C.A., 2003. Astrophys. J. 583, L39-L42; Kim, S.J., Geballe, T.R., Noll, K.S., Courtin, R., 2005. Icarus 173, 522-532] to infer information on the atmospheric parameters (haze extinction, single scattering albedo, methane abundance, etc.) by fitting the methane bands with a detailed microphysical model of Titan's atmosphere (updated from Rannou, P., McKay, C.P., Lorenz, R.D., 2003. Planet. Space Sci. 51, 963-976). We have included in this study an updated version of a database for the CH4 absorption coefficients [STDS, Wenger, Ch., Champion, J.-P., 1998. J. Quant. Spectrosc. Radiat. Transfer 59, 471-480. See also http://www.u-bourgogne.fr/LPUB/TSM/sTDS.html for latest updates; Boudon, V., Champion, J.-P., Gabard, T., Loëte, M., Michelot, F., Pierre, G., Rotger, M., Wenger, Ch., Rey, M., 2004. J. Mol. Spectrosc. 228, 620-634]. For the atmosphere we find that (a) the haze extinction profile that best matches the data is one with higher (by 40%) extinction in the atmosphere with respect to Rannou et al. (2003) down to about 30 km where a complete cut-off occurs; (b) the methane mixing ratio at Titan's surface cannot exceed 3% on a disk-average basis, yielding a maximum CH4 column abundance of 2.27 km-am in Titan's atmosphere. From the derived surface albedo spectrum in the 2.7-3.08 micron region, we bring some constraints on Titan's surface composition. The albedo in the center of the methane window varies from 0.01 to 0.08. These values, compared to others reported in the other methane windows, show a strong compatibility with the water ice spectrum in the near-infrared. Without confirming its existence from this work alone, our data then appear to be compatible with water ice. A variety of other ices, such as CO2, NH3, tholin material or hydrocarbon liquid cannot be excluded from our data, but an additional unidentified component with a signature around 2.74 micron is required to satisfy the data.  相似文献   

15.
During the descent of the Huygens probe through Titan's atmosphere in January 2005, the Descent Imager/Spectral Radiometer (DISR) will perform upward and downward looking measurements at various spectral ranges and spatial resolutions. This internal radiation density could be estimated by radiative transfer calculations for Titan's atmosphere. However, to do this, the optical properties—i.e. volume extinction coefficient, single scattering albedo and scattering phase function—have to be prescribed at every altitude, and these are apriori not known. Herein, an inverse approach is investigated, which retrieves the single scattering albedo and the phase function of the aerosols from DISR observations. The method uses data from a DISR subinstrument, the Solar Aureole imager (SA), to estimate the optical properties of the atmospheric layer between two successive observation altitudes. A unique solution for one layer can in principle be calculated directly from a linear system of equations, but due to the sparseness of the data and the unavoidable noise in the measurements, the inverse problem is ill-posed. The problem is stabilized by the regularization method requiring smoothness of the resultant solution. A consistent set of solutions for all layers is obtained by iterating several times downward and upward through the layers. The method is tested in a simulated radiation density scenario for Titan, which is based on a microphysical aerosol model for the haze layer. Within this scenario, the expected coverage of SA data allows a reconstruction of the angular dependence of the scattering phase function with an explained variance better than 90%.  相似文献   

16.
C.M. Anderson  E.F. Young  C.P. McKay 《Icarus》2008,194(2):721-745
We report on the analysis of high spatial resolution visible to near-infrared spectral images of Titan at Ls=240° in November 2000, obtained with the Space Telescope Imaging Spectrograph instrument on board the Hubble Space Telescope as part of program GO-8580. We employ a radiative transfer fractal particle aerosol model with a Bayesian parameter estimation routine that computes Titan's absolute reflectivity per pixel for 122 wavelengths by modeling the vertical distribution of the lower atmosphere haze and tropospheric methane. Analysis of these data suggests that Titan's haze concentration in the lower atmosphere varies in strength with latitude. We find Titan's tropospheric methane profile to be fairly consistent with latitude and longitude, and we find evidence for local areas of a CH4-N2 binary saturation in Titan's troposphere. Our results suggest that a methane and haze profile at one location on Titan would not be representative of global conditions.  相似文献   

17.
Fine-resolution (500 m/pixel) Cassini Visual and Infrared Mapping Spectrometer (VIMS) T20 observations of Titan resolve that moon's sand dunes. The spectral variability in some dune regions shows that there are sand-free interdune areas, wherein VIMS spectra reveal the exposed dune substrate. The interdunes from T20 are, variously, materials that correspond to the equatorial bright, 5-μm-bright, and dark blue spectral units. Our observations show that an enigmatic “dark red” spectral unit seen in T5 in fact represents a macroscopic mixture with 5-μm-bright material and dunes as its spectral endmembers. Looking more broadly, similar mixtures of varying amounts of dune and interdune units of varying composition can explain the spectral and albedo variability within the dark brown dune global spectral unit that is associated with dunes. The presence of interdunes indicates that Titan's dunefields are both mature and recently active. The spectrum of the dune endmember reveals the sand to be composed of less water ice than the rest of Titan; various organics are consistent with the dunes' measured reflectivity. We measure a mean dune spacing of 2.1 km, and find that the dunes are oriented on the average in an east-west direction, but angling up to 10° from parallel to the equator in specific cases. Where no interdunes are present, we determine the height of one set of dunes photoclinometrically to be between 30 and 70 m. These results pave the way for future exploration and interpretation of Titan's sand dunes.  相似文献   

18.
19.
Bézard B  Coustenis A  McKay CP 《Icarus》1995,113(2):267-276
During the 1981 Voyager encounter, Titan's stratosphere exhibited a large thermal asymmetry, with high northern latitudes being colder than comparable southern latitudes. Given the short radiative time constant, this asymmetry would not be expected at the season of the Voyager observations (spring equinox), if the infrared and solar opacity sources were distributed symmetrically. We have investigated the radiative budget of Titan's stratosphere, using two selections of Voyager IRIS spectra recorded at symmetric northern and southern latitudes. In the region 0.1-1 mbar, temperatures are 7 K colder at 50 degrees N than at 53 degrees S and the difference reaches approximately 13 K at 5 mbar. On the other hand, the northern region is strongly enriched in nitriles and hydrocarbons, and the haze optical depth derived from the continuum emission between 8 and 15 micrometers is twice as large as in the south. Cooling rate profiles have been computed at the two locations, using the gas and haze abundances derived from the IRIS measurements. We find that, despite lower temperatures, the cooling rate profiles in the pressure range 0.15-5 mbar are 20 to 40% larger in the north than in the south, because of the enhanced concentrations of infrared radiators. Because the northern hemisphere appears darker than the southern one in the Voyager images, enhanced solar heating is also expected to take place at 50 degrees N. Solar heating rate profiles have been calculated, with two different assumptions on the origin of the hemispheric asymmetry. In the most likely case where it results from a variation in the absorbance of the haze material, the heating rates are found to be 12-15% larger at the northern location than at the southern one, a smaller increase than that in the cooling rates. If the lower albedo in the north results from an increase in the particle number density, a 55 to 75% difference is found for the pressure range 0.15-5 mbar, thus larger than that calculated for the cooling rates. Considering the uncertainties in the haze model, dynamical heat transport may significantly contribute to the meridional temperature gradients observed in the stratosphere. On the other hand, the latitudinal variation in gas and haze composition may be sufficient to explain the entire temperature asymmetry observed, without invoking a lag in the thermal response of the atmosphere due to dynamical inertia.  相似文献   

20.
The recent measurements of the vertical distribution and optical properties of haze aerosols as well as of the absorption coefficients for methane at long paths and cold temperatures by the Huygens entry probe of Titan permit the computation of the solar heating rate on Titan with greater certainty than heretofore. We use the haze model derived from the Descent Imager/Spectral Radiometer (DISR) instrument on the Huygens probe [Tomasko, M.G., Doose, L., Engel, S., Dafoe, L.E., West, R., Lemmon, M., Karkoschka, E., See, C., 2008a. A model of Titan's aerosols based on measurements made inside the atmosphere. Planet. Space Sci., this issue, doi:10.1016/j.pss.2007.11.019] to evaluate the variation in solar heating rate with altitude and solar zenith angle in Titan's atmosphere. We find the disk-averaged solar energy deposition profile to be in remarkably good agreement with earlier estimates using very different aerosol distributions and optical properties. We also evaluated the radiative cooling rate using measurements of the thermal emission spectrum by the Cassini Composite Infrared Spectrometer (CIRS) around the latitude of the Huygens site. The thermal flux was calculated as a function of altitude using temperature, gas, and haze profiles derived from Huygens and Cassini/CIRS data. We find that the cooling rate profile is in good agreement with the solar heating profile averaged over the planet if the haze structure is assumed the same at all latitudes. We also computed the solar energy deposition profile at the 10°S latitude of the probe-landing site averaged over one Titan day. We find that some 80% of the sunlight that strikes the top of the atmosphere at this latitude is absorbed in all, with 60% of the incident solar energy absorbed below 150 km, 40% below 80 km, and 11% at the surface at the time of the Huygens landing near the beginning of summer in the southern hemisphere. We compare the radiative cooling rate with the solar heating rate near the Huygens landing site averaging over all longitudes. At this location, we find that the solar heating rate exceeds the radiative cooling rate by a maximum of 0.5 K/Titan day near 120 km altitude and decreases strongly above and below this altitude. Since there is no evidence that the temperature structure at this latitude is changing, the general circulation must redistribute this heat to higher latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号