首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The global martian volcanic evolutionary history   总被引:1,自引:0,他引:1  
Viking mission image data revealed the total spatial extent of preserved volcanic surface on Mars. One of the dominating surface expressions is Olympus Mons and the surrounding volcanic province Tharsis. Earlier studies of the global volcanic sequence of events based on stratigraphic relationships and crater count statistics were limited to the image resolution of the Viking orbiter camera. Here, a global investigation based on high-resolution image data gathered by the High-Resolution Stereo Camera (HRSC) during the first years of Mars Express orbiting around Mars is presented. Additionally, Mars Orbiter Camera (MOC) and Thermal Emission Imaging System (THEMIS) images were used for more detailed and complementary information. The results reveal global volcanism during the Noachian period (>3.7 Ga) followed by more focused vent volcanism in three (Tharsis, Elysium, and Circum-Hellas) and later two (Tharsis and Elysium) volcanic provinces. Finally, the volcanic activity became localized to the Tharsis region (about 1.6 Ga ago), where volcanism was active until very recently (200-100 Ma). These age results were expected from radiometric dating of martian meteorites but now verified for extended geological units, mainly found in the Tharsis Montes surroundings, showing prolonged volcanism for more than 3.5 billions years. The volcanic activity on Mars appears episodic, but decaying in intensity and localizing in space. The spatial and temporal extent of martian volcanism based on crater count statistics now provides a much better database for modelling the thermodynamic evolution of Mars.  相似文献   

2.
Amazonian-aged fan-shaped deposits extending to the northwest of each of the Tharsis Montes in the Tharsis region on Mars have been interpreted to have originated from mass-wasting, volcanic, tectonic and/or glacial processes. We use new data from MRO, MGS, and Odyssey to characterize these deposits. Building on recent evidence for cold-based glacial activity at Pavonis Mons and Arsia Mons, we interpret the smaller Ascraeus fan-shaped deposit to be of glacial origin. Our geomorphological assessment reveals a number of characteristics indicative of glacial growth and retreat, including: (1) a ridged facies, interpreted to be composed of drop moraines emplaced during episodic glacial advance and retreat, (2) a knobby facies, interpreted to represent vertical downwasting of the ice sheet, and (3) complex ridges showing a cusp-like structure. We also see evidence of volcano-ice interactions in the form of: (1) an arcuate inward-facing scarp, interpreted to have formed by the chilling of lava flows against the glacial margin, (2) a plateau feature, interpreted to represent a subglacial eruption, and (3) knobby facies superimposed on flat-topped flows with leveed channels, interpreted to be subglacial inflated lava flows that subsequently drained and are covered by glacial till. We discuss the formation mechanisms of these morphologies during cold-based glacial activity and concurrent volcanism. On the basis of a Mid- to Late-Amazonian age (250-380 Ma) established from crater size-frequency distribution data, we explore the climatic implications of recent glaciation at low latitudes on Mars. GCM results show that increased insolation to the poles at high obliquities (>45°) forces sublimation of polar ice, which is transported to lower latitudes and deposited on the flanks of the Tharsis Montes. We assess how local orographic effects, the mass balance of the glacier, and the position of equilibrium line altitudes, all played a role in producing the observed geomorphologies. In doing so, we outline a glacial history for the evolution of the Ascraeus Mons fan-shaped deposit and compare its initiation, growth and demise with those of Arsia Mons and Pavonis Mons.  相似文献   

3.
Studies extending over three decades have concluded that the current orientation of the martian rotation pole is unstable. Specifically, the gravitational figure of the planet, after correction for a hydrostatic form, has been interpreted to indicate that the rotation pole should move easily between the present position and a site on the current equator, 90° from the location of the massive Tharsis volcanic province. We demonstrate, using general physical arguments supported by a fluid Love number analysis, that the so-called non-hydrostatic theory is an inaccurate framework for analyzing the rotational stability of planets, such as Mars, that are characterized by long-term elastic strength within the lithosphere. In this case, the appropriate correction to the gravitational figure is the equilibrium rotating form achieved when the elastic lithospheric shell (of some thickness LT) is accounted for. Moreover, the current rotation vector of Mars is shown to be stable when the correct non-equilibrium theory is adopted using values consistent with recent, independent estimates of LT. Finally, we compare observational constraints on the figure of Mars with non-equilibrium predictions based on a large suite of possible Tharsis-driven true polar wander (TPW) scenarios. We conclude, in contrast to recent comparisons of this type based on a non-hydrostatic theory, that the reorientation of the pole associated with the development of Tharsis was likely less than 15° and that the thickness of the elastic lithosphere at the time of Tharsis formation was at least ∼50 km. Larger Tharsis-driven TPW is possible if the present-day gravitational form of the planet at degree 2 has significant contributions from non-Tharsis loads; in this case, the most plausible source would be internal heterogeneities linked to convection.  相似文献   

4.
We use a Mars general circulation model to examine the effect of orbital changes on the planet’s general circulation and climate system. Experiments are performed for obliquities ranging from 0° to 60° for two different longitudes of perihelion. Each experiment simulates a full Mars year assuming a fixed atmospheric dust distribution and fixed amount of CO2 in the atmosphere/cap system. We find that global mean surface temperatures and pressures decline with increasing obliquity due to the increasing extent of the winter polar caps. The seasonal CO2 cycle and intensity of the solstice circulation amplify considerably with increasing obliquity such that global dust storms are likely at both solstices. The most significant feature of the high obliquity solstice circulations is the development of an intense low-level jet associated with the return branch of the Hadley circulation.Model surface stresses are used to map regions of preferred dust lifting, which are defined in terms of an annual deflation potential. For the present obliquity, the model-predicted regions of high deflation potential are in good agreement with Cantor et al.’s (2001, J. Geophys. Res.106, 23653-23688) observations, which gives us some confidence in the model’s ability to predict where lifting might occur when Mars’ orbit parameters are different than they are today. In general we find that the dust lifting potential increases sharply with obliquity and is greatest at times of high obliquity when perihelion coincides with northern summer solstice. Over an obliquity cycle, the model global annual deflation potential ranges from several tenths of a millimeter at 0° obliquity to almost 15 mm at 60° obliquity. Much higher values are possible when the atmosphere is very dusty.We find a strong correlation between the deflation potential and surface thermal inertia: regions of high deflation potential correspond to regions of high thermal inertia (high rock abundance), and regions of low deflation potential correspond to regions of low thermal inertia (high dust/sand abundance). Furthermore, while the regions of preferred lifting (high deflation potential) expand somewhat with increasing obliquity and dust loading, the central parts of Tharsis, Arabia, and Elysium show no tendency for significant lifting at any obliquity or longitude of perihelion. These regions may therefore be very old and represent net long-term sinks for atmospheric dust. It is the topography of the planet, through its influence on surface pressure and wind systems, which ultimately determines where dust accumulates.Finally, as was found by Fenton and Richardson (2001, J. Geophys. Res.106, 32885-32909), we find no tendency for the development of east-southeasterly winds at the Pathfinder site for any of our orbital change experiments. This suggests that the ancient wind regime discussed by Greeley et al. (2000, J. Geophys. Res.105, 1829-1840) was produced by other factors, such as polar wander.  相似文献   

5.
Gerald G. Schaber 《Icarus》1980,42(2):159-184
High-resolution Viking Orbiter images (10 to 15 m/pixel) contain significant information on Martian surface roughness at 25- to 100-m lateral scales, whereas Earth-based radar observations of Mars are sensitive to roughness at lateral scales of 1 to 30 m, or more. High-rms slopes predicted for the Tharsis-Memnonia-Amazonis volcanic plains from extremely weak radar returns (low peak radar cross section) are qualitatively confirmed by the Viking image data. Large-scale, curvilinear (but parallel) ridges on lava flows in the Memnonia Fossae region are interpreted as innate flow morphology caused by compressional foldover of moving lava sheets of possible rhyolite-dacite composition. The presence or absence of a recent mantle of fine-grained eolian material on the volcanic surfaces studied was determined by the visibility of fresh impact craters with diameters less than 50 m. Lava flows south and west of Arsia Mons, and within the large region of low thermal inertia centered on Tharsis Montes (H. H. Kieffer et al., 1977, J. Geophys. Res.82, 4249–4291), were found to possess such a recent mantle. At predawn residual temperatures ≥ ?10K (south boundary of this low-temperature region), lava flows are shown to have relatively old eolian mantles. Lava flows with surfaces modified by eolian erosion and deposition occur west-northwest of Apollinaris Patera at the border of the cratered equatorial uplands and southern Elysium Planitia. Nearby yardangs, for which radar observations indicate very high-rms slopes, are similar to terrestrial features of similar origin.  相似文献   

6.
Jafar Arkani-Hamed 《Icarus》2009,204(2):489-498
We investigate the polar wander of Mars in the last ∼4.2 Ga. We identify two sets of basins from the 20 giant impact basins reported by Frey [Frey, H., 2008. Geophys. Res. Lett. 35, L13203] which trace great circles on Mars, and propose that the great circles were the prevailing equators of Mars at the impact times. Monte Carlo tests are conducted to demonstrate that the two sets of basins are most likely not created by random impacts. Also, fitting 63,771 planes to randomly selected sets of 5, 6, or 7 basins indicated that the identified two sets are unique. We propose three different positions for the rotation pole of Mars, besides the present one. Accordingly, Tharsis bulge was initially formed at ∼50 N and moved toward the equator while rotating counterclockwise due to the influence of the two newly forming volcanic constructs, Alba Patera and Elysium Rise. The formation of the giant impact basins, subsequent mass concentrations (mascons) in Argyre, Isidis, and Utopia basins, and surface masses of volcanic mountains such as Ascraeus, Pavonis, Arsia and Olympus, caused further polar wander which rotated Tharsis bulge clockwise to arrive at its present location. The extensive polar motion of Mars during 4.2-3.9 Ga implies a weak lithosphere on a global scale, deduced from a total of 72,000 polar wander models driven by Tharsis bulge, Alba Patera and Elysium Rise as the major mass perturbations. Different compensation states, 0-100%, are examined for each of the surface loads, and nine different thicknesses are considered for an elastic lithosphere. The lithosphere must have been very weak, with an elastic thickness of less than 5 km, if the polar wander was driven by these mass perturbations.  相似文献   

7.
Permafrost is ground remaining frozen (temperatures are below the freezing point of water) for more than two consecutive years. An active layer in permafrost regions is defined as a near-surface layer that undergoes freeze-thaw cycles due to day-average surface and soil temperatures oscillating about the freezing point of water. A “dry” active layer may occur in parched soils without free water or ice but significant geomorphic change through cryoturbation is not produced in these environments. A wet active layer is currently absent on Mars. We use recent calculations on the astronomical forcing of climate change to assess the conditions under which an extensive active layer could form on Mars during past climate history. Our examination of insolation patterns and surface topography predicts that an active layer should form on Mars in the geological past at high latitudes as well as on pole-facing slopes at mid-latitudes during repetitive periods of high obliquity. We examine global high-resolution MOLA topography and geological features on Mars and find that a distinctive latitudinal zonality of the occurrence of steep slopes and an asymmetry of steep slopes at mid-latitudes can be attributed to the effect of active layer processes. We conclude that the formation of an active layer during periods of enhanced obliquity throughout the most recent period of the history of Mars (the Amazonian) has led to significant degradation of impact craters, rapidly decreasing the steep slopes characterizing pristine landforms. Our analysis suggests that an active layer has not been present on Mars in the last ∼5 Ma, and that conditions favoring the formation of an active layer were reached in only about 20% of the obliquity excursions between 5 and 10 Ma ago. Conditions favoring an active layer are not predicted to be common in the next 10 Ma. The much higher obliquity excursions predicted for the earlier Amazonian appear to be responsible for the significant reduction in magnitude of crater interior slopes observed at higher latitudes on Mars. The observed slope asymmetry at mid-latitudes suggests direct insolation control, and hence low atmospheric pressure, during the high obliquity periods throughout the Amazonian. We formulate predictions on the nature and distribution of candidate active layer features that could be revealed by higher resolution imaging data.  相似文献   

8.
HiRISE images of Mars with ground sampling down to 25 cm/pixel show that the dust-rich mantle covering the surfaces of the Tharsis Montes is organized into ridges whose form and distribution are consistent with formation by aeolian saltation. Other dusty areas near the volcanoes and elsewhere on the planet exhibit a similar morphology. The material composing these “reticulate” bedforms is constrained by their remote sensing properties and the threshold curve combined with the saltation/suspension boundary, both of which vary as a function of elevation (atmospheric pressure), particle size, and particle composition. Considering all of these factors, dust aggregates are the most likely material composing these bedforms. We propose that airfall dust on and near the volcanoes aggregates in situ over time, maybe due to electrostatic charging followed by cementation by salts. The aggregates eventually reach a particle size at which saltation is possible. Aggregates on the flanks are transported downslope by katabatic winds and form linear and “accordion” morphologies. Materials within the calderas and other depressions remain trapped and are subjected to multidirectional winds, forming an interlinked “honeycomb” texture. In many places on and near the volcanoes, light-toned, low thermal inertia yardangs and indurated surfaces are present. These may represent “duststone” formed when aggregates reach a particle size below the threshold curve, such that they become stabilized and subsequently undergo cementation.  相似文献   

9.
New results from a 1 Gyr integration of the martian orbit are presented along with a seasonally resolved energy balance climate model employed to illuminate the gross characteristics of the long-term atmospheric pressure evolution. We present a new analysis of the statistical variation of the martian obliquity and precession prior to and subsequent to the formation of the Tharsis uplift, and explore the long term effects on the martian climate. We find that seasonal polar cycles have a critical influence on the ability for the regolith to release CO2 at high obliquities, and find that the atmospheric CO2 actually decreases at high obliquities due to the cooling effect of polar deposits at latitudes where seasonal caps form. At low obliquity, the formation of massive, permanent polar caps depends critically on the values of the frost albedo, Afrost, and frost emissivity, ?frost. Using our model with values of Afrost=0.67 and ?frost=0.55, matched to the NASA Ames General Circulation Model (GCM) results (Haberle et al., 1993, J. Geophys. Res. 98, 3093-3123, and Haberle et al., 2003, Icarus 161, 66-89), we find that permanent caps only form at low obliquities (<13°), suggesting that any permanent deposits on the surface of Mars today may be residuals left over from a period of very low obliquity, or are the result of mechanisms not represented by this model. Thus, contrary to expectations, the martian atmospheric pressure is remarkable static over time, and decreases both at high and low obliquity. Also, from our one billion year orbital model, we present new results on the fraction of time Mars is expected to experience periods of low obliquity and high obliquity.  相似文献   

10.
Abstract— The age, structure, composition, and petrogenesis of the martian lithosphere have been constrained by spacecraft imagery and remote sensing. How well do martian meteorites conform to expectations derived from this geologic context? Both data sets indicate a thick, extensive igneous crust formed very early in the planet's history. The composition of the ancient crust is predominantly basaltic, possibly andesitic in part, with sediments derived from volcanic rocks. Later plume eruptions produced igneous centers like Tharsis, the composition of which cannot be determined because of spectral obscuration by dust. Martian meteorites (except Allan Hills 84001) are inferred to have come from volcanic flows in Tharsis or Elysium, and thus are not petrologically representative of most of the martian surface. Remote‐sensing measurements cannot verify the fractional crystallization and assimilation that have been documented in meteorites, but subsurface magmatic processes are consistent with orbital imagery indicating thick crust and large, complex magma chambers beneath Tharsis volcanoes. Meteorite ejection ages are difficult to reconcile with plausible impact histories for Mars, and oversampling of young terrains suggests either that only coherent igneous rocks can survive the ejection process or that older surfaces cannot transmit the required shock waves. The mean density and moment of inertia calculated from spacecraft data are roughly consistent with the proportions and compositions of mantle and core estimated from martian meteorites. Thermal models predicting the absence of crustal recycling, and the chronology of the planetary magnetic field agree with conclusions from radiogenic isotopes and paleomagnetism in martian meteorites. However, lack of vigorous mantle convection, as inferred from meteorite geochemistry, seems inconsistent with their derivation from the Tharsis or Elysium plumes. Geological and meteoritic data provide conflicting information on the planet's volatile inventory and degassing history, but are apparently being reconciled in favor of a periodically wet Mars. Spacecraft measurements suggesting that rocks have been chemically weathered and have interacted with recycled saline groundwater are confirmed by weathering products and stable isotope fractionations in martian meteorites.  相似文献   

11.
Mars surface characteristics at and near the Viking Chryse and Tritonis Lacus landing areas were determined by radio scatter using the new 12.6 cm radar at the Arecibo Observatory during 1975–1976. Interpretation of each power spectrum suggests rms surface tilts of 4° at the final A1WNW (47.9°W, 22.5°N) site, 5° near the original A1 site, and 6° between the two. At the back-up site (A2) surface roughness estimates were about 4°. Striking changes in surface texture have been found near the eastern bases of Tharsis Montes and Albor Tholus, each volcanic feature marking the western boundary of very smooth surface units. The roughness sensed at 1 to 100 m scales by radar appears to be relatively independent of the surface units defined at large scale lengths by photogeologists. Radar properties thus provide an additional means by which planetary surfaces may be characterized.  相似文献   

12.
As the obliquity of Mars is strongly chaotic, it is not possible to give a solution for its evolution over more than a few million years. Using the most recent data for the rotational state of Mars, and a new numerical integration of the Solar System, we provide here a precise solution for the evolution of Mars' spin over 10 to 20 Myr. Over 250 Myr, we present a statistical study of its possible evolution, when considering the uncertainties in the present rotational state. Over much longer time span, reaching 5 Gyr, chaotic diffusion prevails, and we have performed an extensive statistical analysis of the orbital and rotational evolution of Mars, relying on Laskar's secular solution of the Solar System, based on more than 600 orbital and 200,000 obliquity solutions over 5 Gyr. The density functions of the eccentricity and obliquity are specified with simple analytical formulas. We found an averaged eccentricity of Mars over 5 Gyr of 0.0690 with standard deviation 0.0299, while the averaged value of the obliquity is 37.62° with a standard deviation of 13.82°, and a maximal value of 82.035°. We find that the probability for Mars' obliquity to have reached more than 60° in the past 1 Gyr is 63.0%, and 89.3% in 3 Gyr. Over 4 Gyr, the position of Mars' axis is given by a uniform distribution on a spherical cap limited by the obliquity 58.62°, with the addition of a random noise allowing a slow diffusion beyond this limit. We can also define a standard model of Mars' insolation parameters over 4 Gyr with the most probable values 0.068 for the eccentricity and 41.80° for the obliquity.  相似文献   

13.
The geoid of Mars is dominated by its equilibrium figure and by the effect of the Tharsis rise. To investigate the rotational stability of Mars prior to the rise of Tharsis, we produced a residual non-hydrostatic geoid without Tharsis. First the hydrostatic component of the present-day flattening was removed. This procedure was performed using a 6% non-hydrostatic component of flattening, a value set by the spin axis precession rate of Mars. Then zonal spherical harmonics up to degree 6 centered on Tharsis were removed. Finally, the resultant residual geoid was evaluated for rotational stability by comparing polar and equatorial moments at 4050 trial pole positions. If the spin axis of ancient Mars was secularly stable, our analysis indicates that substantial polar wander has occurred with the rise of Tharsis. Stable spin axis positions on the non-hydrostatic residual figure of Mars are 15° to 90° from the present-day poles. This result is consistent with previously proposed paleopoles based on magnetic anomalies, geomorphology, and grazing impacts.  相似文献   

14.
David Parry Rubincam 《Icarus》2003,163(2):469-478
Polar wander may occur on Triton and Pluto because of volatile migration. Triton, with its low obliquity, can theoretically sublimate volatiles (mostly nitrogen) at the rate of ∼1013 kg year−1 from the equatorial regions and deposit them at the poles. Assuming Triton to be rigid on the sublimation timescale, after ∼105 years the polar caps would become large enough to cancel the rotational flattening, with a total mass equivalent to a global layer ∼120-250 m in depth. At this point the pole wanders about the tidal bulge axis, which is the line joining Triton and Neptune. Rotation about the bulge axis might be expected to disturb the leading side/trailing side cratering statistics. Because no such disturbance is observed, it may be that Triton’s surface volatile inventory is too low to permit wander. On the other hand, its mantle viscosity might be low, so that any uncompensated cap load might be expected to wander toward the tidal bulge axis. In this case, the axis of wander passes through the equator from the leading side to the trailing side; rotation about this wander axis would not disturb the cratering statistics. Low-viscosity polar wander may explain the bright southern hemisphere: this is the pole which is wandering toward the sub-Neptune point. In any case the “permanent” polar caps may be geologically very young. Polar wander may possibly take place on Pluto, due to its obliquity oscillations and perihelion-pole geometry. However, Pluto is probably not experiencing any wander at present. The Sun has been shining strongly on the poles over the last half of the obliquity cycle, so that volatiles should migrate to the equator, stabilizing the planet against wander. Spacecraft missions to Triton and Pluto which measure the dynamical flattening could give information about the accumulation of volatiles at the poles. Such information is best obtained by measuring gravity and topography from orbiters, as was done for Mars with the highly successful Mars Global Surveyor.  相似文献   

15.
The paradigm of an ancient warm, wet, and dynamically active Mars, which transitioned into a cold, dry, and internally dead planet, has persisted up until recently despite published Viking-based geologic maps that indicate geologic and hydrologic activity extending into the Late Amazonian epoch. This paradigm is shifting to a water-enriched planet, which may still exhibit internal activity, based on a collection of geologic, hydrologic, topographic, chemical, and elemental evidences obtained by the Viking, Mars Global Surveyor (MGS), Mars Odyssey (MO), Mars Exploration Rovers (MER), and Mars Express (MEx) missions. The evidence includes: (1) stratigraphically young rock materials such as pristine lava flows with few, if any, superposed impact craters; (2) tectonic features that cut stratigraphically young materials; (3) features with possible aqueous origin such as structurally controlled channels that dissect stratigraphically young materials and anastomosing-patterned slope streaks on hillslopes; (4) spatially varying elemental abundances for such elements as hydrogen (H) and chlorine (Cl) recorded in rock materials up to 0.33 m depth; and (5) regions of elevated atmospheric methane. This evidence is pronounced in parts of Tharsis, Elysium, and the region that straddles the two volcanic provinces, collectively referred to here as the Tharsis/Elysium corridor. Based in part on field investigations of Solfatara Crater, Italy, recommended as a suitable terrestrial analog, the Tharsis/Elysium corridor should be considered a prime target for Mars Reconnaissance Orbiter (MRO) investigations and future science-driven exploration to investigate whether Mars is internally and hydrologically active at the present time, and whether the persistence of this activity has resulted in biologic activity.  相似文献   

16.
Three localized sets of small arcuate ridges associated with slopes in the northern polar area of Mars (∼70°N latitude) are morphologically similar to sets of drop moraines left by episodes of advance and retreat of cold-based glaciers. Comparison with other glacial features on Mars shows that these features differ in important aspects from those associated with water–ice flow. Instead, we interpret these features to be due to perennial accumulation and flow of solid carbon dioxide during recent periods of very low spin-axis obliquity.  相似文献   

17.
Global recharge of the martian hydrologic system has traditionally been viewed as occurring through basal melting of the south polar cap. We conclude that regional recharge of a groundwater system at the large volcanic provinces, Elysium and Tharsis, is also very plausible and has several advantages over a south polar recharge source in providing a more direct, efficient supply of water to the outflow channel source regions surrounding these areas. This recharge scenario is proposed to have operated concurrently with and within the context of a global cryosphere–hydrosphere system of the subsurface characteristic of post-Noachian periods. To complement existing groundwater flow modeling studies, we examine geologic evidence and possible mechanisms for accumulation of water at high elevations on the volcanic rises, such as melting snow, infiltration, and increased effective permeability of the subsurface between the recharge zone and outflow source. Evidence for the presence of large Amazonian-aged cold-based piedmont glaciers on the Tharsis Montes has been well documented. Climate modeling predicts snow accumulation on high volcanic rises at obliquities thought to be typical over much of martian history. Thermal gradients causing basal melting of snowpack over 1 km thick could provide several kg m−2 yr−1 of water, charging a volume equivalent to the pore space in a square meter column of subsurface in less than 1.5×105 yr. In order to account for estimated outflow channel volumes, the subsurface volume above the elevation of the outflow channels must be charged several times over the area of Tharsis. Complete aquifer recharge can be accomplished in ∼0.3–2 My through the snowpack melting mechanism at Tharsis and in ∼5×104 years for channel requirements at Elysium. Abundant radial dikes emanating from large martian volcanic rises can crack and/or melt the cryosphere, initiating water outflow and creating anisotropies that can channel subsurface water from a high-elevation groundwater reservoir to outflow sources. In this model, snow accumulation, infiltration of meltwater, and increased effective permeabilities are a consequence of the geologic, thermal, and climatic environment at Elysium and Tharsis, and may have had a genetic influence on the preferential distribution of outflow channels around volcanic rises on Mars.  相似文献   

18.
We use Viking and new MGS and Odyssey data to characterize the lobate deposits superimposed on aureole deposits along the west and northwest flanks of Olympus Mons, Mars. These features have previously been interpreted variously as landslide, pyroclastic, lava flow or glacial features on the basis of Viking images. The advent of multiple high-resolution image and topography data sets from recent spacecraft missions allow us to revisit these features and assess their origins. On the basis of these new data, we interpret these features as glacial deposits and the remnants of cold-based debris-covered glaciers that underwent multiple episodes of advance and retreat, occasionally interacting with extrusive volcanism from higher on the slopes of Olympus Mons. We subdivide the deposits into fifteen distinctive lobes. Typical lobes begin at a theater-like alcove in the escarpment at the base of Olympus Mons, interpreted to be former ice-accumulation zones, and extend outward as a tongue-shaped or fan-shaped deposit. The surface of a typical lobe contains (moving outward from the basal escarpment): a chaotic facies of disorganized hillocks, interpreted as sublimation till in the accumulation zone; arcuate-ridged facies characterized by regular, subparallel ridges and interpreted as the ridges of surface debris formed by the flow of underlying ice; and marginal ridges interpreted as local terminal moraines. Several lobes also contain a hummocky facies toward their margins that is interpreted as a distinctive type of sublimation till shaped by structural dislocations and preferential loss of ice. Blocky units are found extending from the escarpment onto several lobes; these units are interpreted as evidence of lava-ice interaction and imply that ice was present at a time of eruptive volcanic activity higher on the slopes of Olympus Mons. Other than minor channel-like features in association with lava-ice interactions, we find no evidence for the flow of liquid water in association with these lobate features that might suggest: (1) near-surface groundwater as a source for ice in the alcoves in the lobe source region at the base of the scarp, or (2) basal melting and drainage emanating from the lobes that might indicate wet-based glacial conditions. Instead, the array of features is consistent with cold-based glacial processes. The glacial interpretations outlined here are consistent with recent geological evidence for low-latitude ice-rich features at similar positions on the Tharsis Montes as well as with orbital dynamic and climate models indicating extensive snow and ice accumulation associated with episodes of increased obliquity during the Late Amazonian period of the history of Mars.  相似文献   

19.
20.
Nicolas Mangold 《Icarus》2005,174(2):336-359
Patterned grounds such as polygonal features and slope stripes are the signature of the presence of ground ice and of temperature variations in cold regions on Earth. Identifying similar features on Mars is important to understand its past climate as well as the ground ice distribution. In this study, young patterned grounds are classed and mapped from the systematical analysis of Mars Observer Camera high resolution images. These features are located poleward of 55° latitude which fits the distribution of ground ice found by the Neutron Spectrometer onboard Mars Odyssey. Thermal contraction due to seasonal temperature variations is the predominant process of formation of polygons formed by cracks which sizes vary from 15 to 300 m. The small (<40 m) widespread polygons are very recent and degraded by the desiccation of ground ice from the cracks which enhances the effect of ice sublimation. The large polygons (50 to 300 m) located only around the south CO2 polar cap indicate the presence of ground ice and thus outline the limit of the CO2 ice cap. They could be due to the blanketing of water ice deposits by the advances and retreats of the residual CO2 ice cap during the last thousand years. Large (50-250 m) and homogeneous polygons similar to ice wedge polygons, hillslope stripes and solifluction lobes may indicate that specific environments such as crater floors and hillslopes could have been submitted to freeze-thaw cycles, possibly related to higher summer temperatures in periods of obliquity higher than 35°. These interpretations must be strengthened by higher resolution images such as those of the HiRise mission of the Mars Reconnaissance Orbiter because locations with past seasonal thaw could be of major interest as potential landing sites for the Phoenix mission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号