首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observations suggest that moist convection plays an important role in the large-scale dynamics of Jupiter's and Saturn's atmospheres. Here we use a reduced-gravity quasigeostrophic model, with a parameterization of moist convection that is based on observations, to study the interaction between moist convection and zonal jets on Jupiter and Saturn. Stable jets with approximately the same width and strength as observations are generated in the model. The observed zonal jets violate the barotropic stability criterion but the modeled jets do so only if the flow in the deep underlying layer is westward. The model results suggest that a length scale and a velocity scale associated with moist convection control the width and strength of the jets. The length scale and velocity scale offer a possible explanation of why the jets of Saturn are stronger and wider than those of Jupiter.  相似文献   

2.
The origin of zonal jets on the jovian planets has long been a topic of scientific debate. In this paper we show that deep convection in a spherical shell can generate zonal flow comparable to that observed on Jupiter and Saturn, including a broad prograde equatorial jet and multiple alternating jets at higher latitudes. We present fully turbulent, 3D spherical numerical simulations of rapidly rotating convection with different spherical shell geometries. The resulting global flow fields tend to be segregated into three regions (north, equatorial, and south), bounded by the tangent cylinder that circumscribes the inner boundary equator. In all of our simulations a strong prograde equatorial jet forms outside the tangent cylinder, whereas multiple jets form in the northern and southern hemispheres, inside the tangent cylinder. The jet scaling of our numerical models and of Jupiter and Saturn is consistent with the theory of geostrophic turbulence, which we extend to include the effect of spherical shell geometry. Zonal flow in a spherical shell is distinguished from that in a full sphere or a shallow layer by the effect of the tangent cylinder, which marks a reversal in the sign of the planetary β-parameter and a jump in the Rhines length. This jump is manifest in the numerical simulations as a sharp equatorward increase in jet widths—a transition that is also observed on Jupiter and Saturn. The location of this transition gives an estimate of the depth of zonal flow, which seems to be consistent with current models of the jovian and saturnian interiors.  相似文献   

3.
Anderson and Schubert [2007. Saturn's Gravitational field, internal rotation, and interior structure. Science 317, 1384-1387 (paper I)] proposed that Saturn's rotation period can be ascertained by minimizing the dynamic heights of the 100 mbar isosurface with respect to the geoid; they derived a rotation period of 10 h 32 m 35 s. We investigate the same approach for Jupiter to see if the Jovian rotation period is predicted by minimizing the dynamical heights of its isobaric (1 bar pressure level) surface using zonal wind data. A rotation period of 9 h 54 m 29.7 s is found. Further, we investigate the minimization method by fitting Pioneer and Voyager occultation radii for both Jupiter and Saturn. Rotation periods of 9 h 55 m 30 s and 10 h 32 m 35 s are found to minimize the dynamical heights for Jupiter and Saturn, respectively. Though there is no dynamical principle requiring the minimization of the dynamical heights of an isobaric surface, the successful application of the method to Jupiter lends support to its relevance for Saturn.We derive Jupiter and Saturn rotation periods using equilibrium theory to explain the difference between equatorial and polar radii. Rotation periods of 9 h 55 m 20 s and 10 h 31 m 49 s are found for Jupiter and Saturn, respectively. We show that both Jupiter's and Saturn's shapes can be derived using solid-body rotation, suggesting that zonal winds have a minor effect on the planetary shape for both planets.The agreement in the values of Saturn's rotation period predicted by the different approaches supports the conclusion that the planet's period of rotation is about 10 h 32 m.  相似文献   

4.
The global distribution of phosphine (PH3) on Jupiter and Saturn is derived using 2.5 cm−1 spectral resolution Cassini/CIRS observations. We extend the preliminary PH3 analyses on the gas giants [Irwin, P.G.J., and 6 colleagues, 2004. Icarus 172, 37-49; Fletcher, L.N., and 9 colleagues, 2007a. Icarus 188, 72-88] by (a) incorporating a wider range of Cassini/CIRS datasets and by considering a broader spectral range; (b) direct incorporation of thermal infrared opacities due to tropospheric aerosols and (c) using a common retrieval algorithm and spectroscopic line database to allow direct comparison between these two gas giants.The results suggest striking similarities between the tropospheric dynamics in the 100-1000 mbar regions of the giant planets: both demonstrate enhanced PH3 at the equator, depletion over neighbouring equatorial belts and mid-latitude belt/zone structures. Saturn's polar PH3 shows depletion within the hot cyclonic polar vortices. Jovian aerosol distributions are consistent with previous independent studies, and on Saturn we demonstrate that CIRS spectra are most consistent with a haze in the 100-400 mbar range with a mean optical depth of 0.1 at 10 μm. Unlike Jupiter, Saturn's tropospheric haze shows a hemispherical asymmetry, being more opaque in the southern summer hemisphere than in the north. Thermal-IR haze opacity is not enhanced at Saturn's equator as it is on Jupiter.Small-scale perturbations to the mean PH3 abundance are discussed both in terms of a model of meridional overturning and parameterisation as eddy mixing. The large-scale structure of the PH3 distributions is likely to be related to changes in the photochemical lifetimes and the shielding due to aerosol opacities. On Saturn, the enhanced summer opacity results in shielding and extended photochemical lifetimes for PH3, permitting elevated PH3 levels over Saturn's summer hemisphere.  相似文献   

5.
H.M. Schmid  F. Joos  D. Gisler 《Icarus》2011,212(2):701-713
We present ground-based limb polarization measurements of Jupiter and Saturn consisting of full disk imaging polarimetry for the wavelength 7300 Å and spatially resolved (long-slit) spectropolarimetry covering the wavelength range 5200-9350 Å.For the polar region of Jupiter we find for λ = 6000 Å a very strong radial (perpendicular to the limb) fractional polarization with a seeing corrected maximum of about +11.5% in the South and +10.0% in the North. This indicates that the polarizing haze layer is thicker at the South pole. The polar haze layers extend down to 58° in latitude. The derived polarization values are much higher than reported in previous studies because of the better spatial resolution of our data and an appropriate consideration of the atmospheric seeing. Model calculations demonstrate that the high limb polarization can be explained by strongly polarizing (p ≈ 1.0), high albedo (ω ≈ 0.98) haze particles with a scattering asymmetry parameter of g ≈ 0.6 as expected for aggregate particles of the type described by West and Smith (West, R.A., Smith, P.H. [1991]. Icarus 90, 330-333). The deduced particle parameters are distinctively different when compared to lower latitude regions.The spectropolarimetry of Jupiter shows a decrease in the polar limb polarization towards longer wavelengths and a significantly enhanced polarization in strong methane bands when compared to the adjacent continuum. This is a natural outcome for a highly polarizing haze layer above an atmosphere where multiple scatterings are suppressed in absorption bands. For lower latitudes the fractional polarization is small, negative, and it depends only little on wavelength except for the strong CH4-band at 8870 Å.The South pole of Saturn shows a lower polarization (p ≈ 1.0-1.5%) than the poles of Jupiter. The spectropolarimetric signal for Saturn decrease rapidly with wavelength and shows no significant enhancements in the fractional polarization in the absorption bands. These properties can be explained by a vertically extended stratospheric haze region composed of small particles <100 nm as suggested previously by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2005]. Icarus 179, 195-221).In addition we find in the V- and R-band a previously not observed strong polarization feature (p = 1.5-2.0%) near the equator of Saturn. The origin of this polarization signal is unclear but it could be related to a seasonal effect.Finally we discuss the potential of ground-based limb polarization measurements for the investigation of the scattering particles in the atmospheres of Jupiter and Saturn.  相似文献   

6.
Jupiter's eastward jet at 24° N, which formerly had the fastest winds on the planet, has maintained a less extreme speed of ∼135 m/s since 1991, carrying a series of long-lived vortices at 125 m/s. In 2002-2003, as the albedo of the adjacent North Temperate Belt increased, the tracks of the vortices accelerated slightly, and they had disappeared by 2005. In 2005, small tracers had a mean speed of 146.4 (±0.9) m/s, significantly faster than the previous mean speed of the jet, suggesting that the jet peak itself has accelerated at cloud-top level, and that the jet is beginning to return to the super-fast state. These changes may resemble the even greater transformations occurring in the equatorial jet of Saturn.  相似文献   

7.
We propose a dynamical mechanism that can plausibly explain the origin of the broad prograde equatorial winds observed on Jupiter and Saturn, and examine the feasibility of this mechanism using two- (2D) and three-dimensional (3D) numerical simulation models. The idea is based on combining a narrow Gaussian jet peaking at the equator, which is induced by the momentum transfer from an upward propagating equatorial Kelvin-wave, and a pair of off-equatorial jets due to a meridional-vertical circulation similar to the tropical Hadley circulation on Earth. We employ for this feasibility study a 2D mechanistic mean-flow model which incorporates the influence of prescribed waves, and a 3D general circulation model, based on the generalised primitive equations of atmospheric motion. We then confirm that the dynamical models of both kinds can successfully reproduce theoretically expected flows of a reasonable magnitude, and that when two mechanisms are combined, a broad super-rotating jet is produced with off-equatorial maxima in zonal velocity for both Jupiter and Saturn, approximately in accordance with observations.  相似文献   

8.
The exospheric theory based on the Kappa velocity distribution function (VDF) is used to model the exosphere of the giant planets Jupiter and Saturn. Such Kappa velocity distribution functions with an enhanced population of suprathermal particles are indeed often observed in space plasmas and in the space environment of the planets. The suprathermal particles have significant effects on the escape flux, density and temperature profiles of the particles in the exosphere of the giant planets. The polar wind flux becomes several orders larger when suprathermal electrons are considered, so that the planetary ionosphere becomes then a significant source for their inner magnetosphere. Moreover, the number density of the particles decreases slower as a function of the altitude when a Kappa distribution is considered instead of a Maxwellian one. Two-dimensional maps of density are calculated for typical values of the temperatures. The exospheric formalism is also applied to study the escape flux from the exospheres of Io and Titan, respectively, moons of Jupiter and Saturn.  相似文献   

9.
Ethylene (C2H4) emission has been measured in the poles and equator of Jupiter. The 949 cm−1 spectra were recorded with a high resolution spectrometer at the McMath-Pierce telescope at Kitt Peak in October-November 1998 and at the Infrared Telescope Facility at Mauna Kea in June 2000. C2H4 is an important product of methane chemistry in the outer planets. Knowledge of its abundance can help discriminate among the various proposed sets of CH4 photolysis branching ratios at Ly-α, and determine the relative importance of the reaction pathways that produce C2H2 and C2H6. In the equatorial region the C2H4 emission is weak, and we were only able to detect it at high air-mass, near the limb. We derive a peak equatorial molar abundance of C2H4 of 4.5×10−7-1.7×10−6 near 2.2×10−3 mbar, with a total column of 5.7×1014-2.2×1015 molecules cm−2 above 10 mbar depending upon choice of thermal profile. We observed enhanced C2H4 emission from the poles in the regions where auroras are seen in X-ray, UV, and near infrared images. In 2000 we measured a short-term change in the distribution of polar C2H4 emission; the emission in the north IR auroral “hot spot” decreased by a factor of three over a two-day interval. This transient behavior and the sensitivity of C2H4 emission to temperature changes near its contribution peak at 5-10 microbar suggests that the polar enhancement is primarily a thermal effect coupled with vertical transport. Comparing our observations from Kitt Peak and Mauna Kea shows that the C2H4 emission of the northern non-“hot spot” auroral regions did not change over the three-year period while that in the southern polar regions decreased.  相似文献   

10.
Large-scale zonal flows, as observed on the giant planets, can be driven by thermal convection in a rapidly rotating spherical shell. Most previous models of convectively-driven zonal flow generation have utilized stress-free mechanical boundary conditions (FBC) for both the inner and the outer surfaces of the convecting layer. Here, using 3D numerical models, we compare the FBC case to the case with a stress free outer boundary and a non-slip inner boundary, which we call the mixed case (MBC). We find significant differences in surface zonal flow profiles produced by the two cases. In low to moderate Rayleigh number FBC cases, the main equatorial jet is flanked by a strong, high-latitude retrograde jets in the northern and southern hemispheres. For the highest Rayleigh number FBC case, the equatorial jet is flanked by strong reversed jets as well as two additional large-scale alternating jets at higher latitudes. The MBC cases feature stronger equatorial jets but, much weaker, small-scale alternating zonal flows are found at higher latitudes. Our high Rayleigh number FBC results best compare with the zonal flow pattern observed on Jupiter, where the equatorial jet is flanked by strong retrograde jets as well as small-scale alternating jets at high latitude. In contrast, the MBC results compare better with the observed flow pattern on Saturn, which is characterized by a dominant prograde equatorial jet and a lack of strong high latitude retrograde flow. This may suggest that the mechanical coupling at the base of the jovian convection zone differs from that on Saturn.  相似文献   

11.
We give an overview of our current understanding of the structure of gas giant planets, from Jupiter and Saturn to extrasolar giant planets. We focus on addressing what high-pressure laboratory experiments on hydrogen and helium can help to elucidate about the structure of these planets.  相似文献   

12.
We present the first models of Jupiter and Saturn to couple their evolution to both a radiative-atmosphere grid and to high-pressure phase diagrams of hydrogen with helium and other admixtures. We find that prior calculated phase diagrams in which Saturn's interior reaches a region of predicted helium immiscibility do not allow enough energy release to prolong Saturn's cooling to its known age and effective temperature. We explore modifications to published phase diagrams that would lead to greater energy release, and propose a modified H-He phase diagram that is physically reasonable, leads to the correct extension of Saturn's cooling, and predicts an atmospheric helium mass fraction Yatmos=0.185, in agreement with recent estimates. We also explore the possibility of internal separation of elements heavier than helium, and find that, alternatively, such separation could prolong Saturn's cooling to its known age and effective temperature under a realistic phase diagram and heavy element abundance (in which case Saturn's Yatmos would be solar but heavier elements would be depleted). In none of these scenarios does Jupiter's interior evolve to any region of helium or heavy-element immiscibility: Jupiter evolves homogeneously to the present day. We discuss the implications of our calculations for Saturn's primordial core mass.  相似文献   

13.
Yuan Lian  Adam P. Showman 《Icarus》2008,194(2):597-615
Three-dimensional numerical simulations of the atmospheric flow on giant planets using the primitive equations show that shallow thermal forcing confined to pressures near the cloud tops can produce deep zonal winds from the tropopause all the way down to the bottom of the atmosphere. These deep winds can attain speeds comparable to the zonal jet speeds within the shallow, forced layer; they are pumped by Coriolis acceleration acting on a deep meridional circulation driven by the shallow-layer eddies. In the forced layer, the flow reaches an approximate steady state where east-west eddy accelerations balance Coriolis accelerations acting on the meridional flow. Under Jupiter-like conditions, our simulations produce 25 to 30 zonal jets, similar to the number of jets observed on Jupiter and Saturn. The simulated jet widths correspond to the Rhines scale; this suggests that, despite the three-dimensional nature of the dynamics, the baroclinic eddies energize a quasi-two-dimensional inverse cascade modified by the β effect (where β is the gradient of the Coriolis parameter). In agreement with Jupiter, the jets can violate the barotropic and Charney-Stern stability criteria, achieving curvatures 2u/∂y2 of the zonal wind u with northward distance y up to 2β. The simulations exhibit a tendency toward neutral stability with respect to Arnol'd's second stability theorem in the upper troposphere, as has been suggested for Jupiter, although deviations from neutrality exist. When the temperature varies strongly with latitude near the equator, our simulations can also reproduce the stable equatorial superrotation with wind speeds greater than . Diagnostics show that barotropic eddies at low latitudes drive the equatorial superrotation. The simulations also broadly explain the distribution of jet-pumping eddies observed on Jupiter and Saturn. While idealized, these simulations therefore capture many aspects of the cloud-level flows on Jupiter and Saturn.  相似文献   

14.
Previous analyses into flexural deformation on the icy satellites of Jupiter and Saturn have assumed static, elastic lithospheres. Viscous creep within the lithosphere, however, can cause evolution over time. Here, we apply a finite-element model that employs a time-dependent elastic–viscous-plastic rheology in order to investigate flexure on icy satellites. Factors that affect this time-dependent response are those that control creep rates; surface temperature, heat flow, and grain size. Our results show that surface temperature is by far the dominant factor. At higher surface temperatures (100–130 K), the evolution of the deformation is such that the thickness of a modeled elastic lithosphere could vary by up to an order of magnitude, depending on the time scale over which the deformation occurred. Because the flexure observed on icy satellites generally indicates transient high heat flow events, our results indicate that the duration of the heat pulse is an important factor. For the icy worlds of Jupiter and Saturn, static models of lithospheric flexure should be used with caution.  相似文献   

15.
The atmospheres of Jupiter and Saturn exhibit strong and stable zonal winds. How deep the winds penetrate unabated into each planet is unknown. Our investigation favors shallow winds. It consists of two parts. The first part makes use of an Ohmic constraint; Ohmic dissipation associated with the planet's magnetic field cannot exceed the planet's net luminosity. Application to Jupiter (J) and Saturn (S) shows that the observed zonal winds cannot penetrate below a depth at which the electrical conductivity is about six orders of magnitude smaller than its value at the molecular-metallic transition. Measured values of the electrical conductivity of molecular hydrogen yield radii of maximum penetration of 0.96RJ and 0.86RS, with uncertainties of a few percent of R. At these radii, the magnetic Reynolds number based on the zonal wind velocity and the scale height of the magnetic diffusivity is of order unity. These limits are insensitive to difficulties in modeling turbulent convection. They permit complete penetration along cylinders of the equatorial jets observed in the atmospheres of Jupiter and Saturn. The second part investigates how deep the observed zonal winds actually do penetrate. As it applies heuristic models of turbulent convection, its conclusions must be regarded as tentative. Truncation of the winds in the planet's convective envelope would involve breaking the Taylor-Proudman constraint on cylindrical flow. This would require a suitable nonpotential acceleration which none of the obvious candidates appears able to provide. Accelerations arising from entropy gradients, magnetic stresses, and Reynolds stresses appear to be much too weak. These considerations suggest that strong zonal winds are confined to shallow, stably stratified layers, with equatorial jets being the possible exception.  相似文献   

16.
Junko Kominami  Shigeru Ida 《Icarus》2004,167(2):231-243
We have performed N-body simulations on final accretion stage of terrestrial planets, including the eccentricity and inclination damping effect due to tidal interaction with a gas disk. We investigated the dependence on a depletion time scale of the disk, and the effect of secular perturbations by Jupiter and Saturn. In the final stage, terrestrial planets are formed through coagulation of protoplanets of about the size of Mars. They would collide and grow in a decaying gas disk. Kominami and Ida [Icarus 157 (2002) 43-56] showed that it is plausible that Earth-sized, low-eccentricity planets are formed in a mostly depleted gas disk. In this paper, we investigate the formation of planets in a decaying gas disk with various depletion time scales, assuming disk surface density of gas component decays exponentially with time scale of τgas. Fifteen protoplanets with are initially distributed in the terrestrial planet regions. We found that Earth-sized planets with low eccentricities are formed, independent of initial gas surface density, when the condition (τcross+τgrowth)/2?τgas?τcross is satisfied, where τcross is the time scale for initial protoplanets to start orbit crossing in a gas-free case and τgrowth is the time scale for Earth-sized planets to accrete during the orbit crossing stage. In the cases satisfying the above condition, the final masses and eccentricities of the largest planets are consistent with those of Earth and Venus. However, four or five protoplanets with the initial mass remain. In the final stage of terrestrial planetary formation, it is likely that Jupiter and Saturn have already been formed. When Jupiter and Saturn are included, their secular perturbations pump up eccentricities of protoplanets and tend to reduce the number of final planets in the terrestrial planet regions. However, we found that the reduction is not significant. The perturbations also shorten τcross. If the eccentricities of Jupiter and Saturn are comparable to or larger than present values (∼0.05), τcross become too short to satisfy the above condition. As a result, eccentricities of the planets cannot be damped to the observed value of Earth and Venus. Hence, for the formation of terrestrial planets, it is preferable that the secular perturbations from Jupiter and Saturn do not have significant effect upon the evolution. Such situation may be reproduced by Jupiter and Saturn not being fully grown, or their eccentricities being smaller than the present values during the terrestrial planets' formation. However, in such cases, we need some other mechanism to eliminate the problem that numerous Mars-sized planets remain uncollided.  相似文献   

17.
We have determined the following upper limits for the mole fraction of hydrogen halides in Jupiter's atmosphere from Cassini/CIRS observations: [HF]<2.7×10−11, [HCl]<2.3×10−9, [HBr]<1.0×10−9, [HI]<7.6×10−9. These limits are smaller than solar composition for HF and HCl, and support the halogens' condensation in ammonium salts predicted by thermochemical models for the upper jovian troposphere.  相似文献   

18.
The dynamics of mergers of large circulations in Jupiter's atmosphere may permit different models of the atmosphere to be tested. We report well-resolved observations of such events at visible wavelengths: three anticyclonic and three cyclonic events. A merger of anticyclonic white ovals in the South South Temperate domain (2002 March) is compared with the previously reported merger of ovals BE and FA in the South Temperate domain (2000 March). In each case, the two similar-sized ovals converged rapidly once they were separated by less than the sum of their diameters; they orbited around each other anticyclonically during the merger; the merged oval initially had the same rapid drift as the western parent; and, in an unexpected similarity, a cyclonic oval emerged westward from the point of merger. Evidence suggests that a merger of smaller ovals in the North North Temperate domain (2002 February) had similar dynamics. In contrast, mergers of cyclonic ovals in the North Equatorial Belt (‘barges’: 2001 November, 2005 May) proceeded in a different manner. The two parent barges showed no consistent acceleration towards each other as they converged; on contact there was no obvious sign of mutual circulation, and the low-albedo regions had almost passed each other before they finally merged; and the resulting barge had a drift rate intermediate between the two parents, and a length that was greater than either parent. Again, a third such event involving a smaller barge (2002 December) showed many of the same characteristics. These observations define different dynamical behaviour during anticyclonic and cyclonic mergers.  相似文献   

19.
Using the sequence of 70-day continuum-band (751 nm) images from the Cassini Imaging Science System (ISS), we record over 500 compact oval spots and study their relation to the large-scale motions. The ∼100 spots whose vorticity could be measured—the large spots in most cases—were all anticyclonic. We exclude cyclonic features (chaotic regions) because they do not have a compact oval shape, but we do record their interactions with spots. We distinguish probable convective storms from other spots because they appear suddenly, grow rapidly, and are much brighter than their surroundings. The distribution of lifetimes for spots that appeared and disappeared during the 70-day period follows a decaying exponential with time constant (mean lifetime) of 3.5 days for probable convective storms and 16.8 days for all other spots. Extrapolating the exponential beyond 70 days seriously underestimates the number of spots that existed for the entire 70-day period. This and other evidences (size, shape, distribution in latitude) suggest that these long-lived spots with lifetime larger than 70 days are from a separate population. The zonal wind profile obtained manually by tracking individual features (this study) agrees with that obtained automatically by correlating brightness variations in narrow latitude bands (Porco et al., 2003). Some westward jets have developed more curvature and some have developed less curvature since Voyager times, but the number of westward jets that violate the barotropic stability criterion is about the same. In the northern hemisphere the number of spots is greatest at the latitudes of the westward jets, which are the most unstable regions according to the barotropic stability criterion. During the 70-day observation period the Great Red Spot (GRS) absorbed nine westward-moving spots that originated in the South Equatorial Belt (SEB), where most of the probable convective storms originate. Although the probable convective storms do not directly transform themselves into westward-moving spots, their common origin in the SEB suggests that moist convection and the westward jet compose a system that has maintained the GRS over its long lifetime.  相似文献   

20.
Chihiro Tao  Sarah V. Badman 《Icarus》2011,213(2):581-592
Planetary aurora display the dynamic behavior of the plasma gas surrounding a planet. The outer planetary aurora are most often observed in the ultraviolet (UV) and the infrared (IR) wavelengths. How the emissions in these different wavelengths are connected with the background physical conditions are not yet well understood. Here we investigate the sensitivity of UV and IR emissions to the incident precipitating auroral electrons and the background atmospheric temperature, and compare the results obtained for Jupiter and Saturn. We develop a model which estimates UV and IR emission rates accounting for UV absorption by hydrocarbons, ion chemistry, and non-LTE effects. Parameterization equations are applied to estimate the ionization and excitation profiles in the H2 atmosphere caused by auroral electron precipitation. The dependences of UV and IR emissions on electron flux are found to be similar at Jupiter and Saturn. However, the dependences of the emissions on electron energy are different at the two planets, especially for low energy (<10 keV) electrons; the UV and IR emissions both decrease with decreasing electron energy, but this effect in the IR is less at Saturn than at Jupiter. The temperature sensitivity of the IR emission is also greater at Saturn than at Jupiter. These dependences are interpreted as results of non-LTE effects on the atmospheric temperature and density profiles. The different dependences of the UV and IR emissions on temperature and electron energy at Saturn may explain the different appearance of polar emissions observed at UV and IR wavelengths, and the differences from those observed at Jupiter. These results lead to the prediction that the differences between the IR and UV aurora at Saturn may be more significant than those at Jupiter. We consider in particular the occurrence of bright polar infrared emissions at Saturn and quantitatively estimate the conditions for such IR-only emissions to appear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号