首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New estimates for Io eruption temperatures: Implications for the interior   总被引:2,自引:0,他引:2  
The initial interpretation of Galileo data from Jupiter's moon, Io, suggested eruption temperatures . Tidal heating models have difficulties explaining Io's prodigious heat flow if the mantle is , although we suggest that temperatures up to may be possible. In general, Io eruption temperatures have been overestimated because the incorrect thermal model has been applied. Much of the thermal emission from high-temperature hot spots comes from lava fountains but lava flow models were utilized. We apply a new lava fountain model to the highest reported eruption temperature, the SSI observation of the 1997 eruption at Pillan. This resets the lower temperature limit for the eruption from 1600 to . Additionally, viscous heating of the magma may have increased eruption temperature by as a result of the strong compressive stresses in the ionian lithosphere. While further work is needed, it appears that the discrepancy between observations and interior models is largely resolved.  相似文献   

2.
Pele has been the most intense high-temperature hotspot on Io to be continuously active during the Galileo monitoring from 1996-2001. A suite of characteristics suggests that Pele is an active lava lake inside a volcanic depression. In 2000-2001, Pele was observed by two spacecraft, Cassini and Galileo. The Cassini observations revealed that Pele is variable in activity over timescales of minutes, typical of active lava lakes in Hawaii and Ethiopia. These observations also revealed that the short-wavelength thermal emission from Pele decreases with rotation of Io by a factor significantly greater than the cosine of the emission angle, and that the color temperature becomes more variable and hotter at high emission angles. This behavior suggests that a significant portion of the visible thermal emission from Pele comes from lava fountains within a topographically confined lava body. High spatial resolution, nightside images from a Galileo flyby in October 2001 revealed a large, relatively cool (<800 K) region, ringed by bright hotspots, and a central region of high thermal emission, which is hypothesized to be due to fountaining and convection in the lava lake. Images taken through different filters revealed color temperatures of 1500±80 K from Cassini ISS data and 1605±220 and 1420±100 K from small portions of Galileo SSI data. Such temperatures are near the upper limit for basaltic compositions. Given the limitations of deriving lava eruption temperature in the absence of in situ measurement, it is possible that Pele has lavas with ultramafic compositions. The long-lived, vigorous activity of what is most likely an actively overturning lava lake in Pele Patera indicates that there is a strong connection to a large, stable magma source region.  相似文献   

3.
Galileo's Near-Infrared Mapping Spectrometer (NIMS) obtained its final observations of Io during the spacecraft's fly-bys in August (I31) and October 2001 (I32). We present a summary of the observations and results from these last two fly-bys, focusing on the distribution of thermal emission from Io's many volcanic regions that give insights into the eruption styles of individual hot spots. We include a compilation of hot spot data obtained from Galileo, Voyager, and ground-based observations. At least 152 active volcanic centers are now known on Io, 104 of which were discovered or confirmed by Galileo observations, including 23 from the I31 and I32 Io fly-by observations presented here. We modify the classification scheme of Keszthelyi et al. (2001, J. Geophys. Res. 106 (E12) 33 025-33 052) of Io eruption styles to include three primary types: promethean (lava flow fields emplaced as compound pahoehoe flows with small plumes <200 km high originating from flow fronts), pillanian (violent eruptions generally accompanied by large outbursts, >200 km high plumes and rapidly-emplaced flow fields), and a new style we call “lokian” that includes all eruptions confined within paterae with or without associated plume eruptions). Thermal maps of active paterae from NIMS data reveal hot edges that are characteristic of lava lakes. Comparisons with terrestrial analogs show that Io's lava lakes have thermal properties consistent with relatively inactive lava lakes. The majority of activity on Io, based on locations and longevity of hot spots, appears to be of this third type. This finding has implications for how Io is being resurfaced as our results imply that eruptions of lava are predominantly confined within paterae, thus making it unlikely that resurfacing is done primarily by extensive lava flows. Our conclusion is consistent with the findings of Geissler et al. (2004, Icarus, this issue) that plume eruptions and deposits, rather than the eruption of copious amounts of effusive lavas, are responsible for Io's high resurfacing rates. The origin and longevity of islands within ionian lava lakes remains enigmatic.  相似文献   

4.
Dramatic changes in the brightness and shape of Jupiter's extended sodium nebula are found to be correlated with the infrared emission brightness of Io. Previous imaging and modeling studies have shown that varying appearances of the nebula correspond to changes in the rate and the type of loss mechanism for atmospheric escape from Io. Similarly, previous IR observational studies have assumed that enhancements in infrared emissions from Io correspond to increased levels of volcanic (lava flow) activity. In linking these processes observationally and statistically, we conclude that silicate volcanism on Io controls both the rate and the means by which sodium escapes from Io's atmosphere. During active periods, molecules containing sodium become an important transient in Io's upper atmosphere, and subsequent photochemistry and molecular-ion driven dynamics enhance the high speed sodium population, leading to the brightest nebulas observed. This is not the case during volcanically quiet times when omni-present atmospheric sputtering ejects sodium to form a modest, base-level nebula. Sodium's role as a “trace gas” of the more abundant species of sulfur (S) and oxygen (O) is less certain during volcanic episodes. While we suggest that volcanism must also affect the escape rates of S and O, and consequently their extended neutral clouds, the different roles played by lava and plume sources for non-sodium species are far too uncertain to make definitive comparisons at this time.  相似文献   

5.
We report observations of the ro-vibronic a1Δ→X3Σ transition of SO at 1.707 μm on Io. These data were taken while Io was eclipsed by Jupiter, on four nights between July 2000 and March 2003. We analyze these results in conjunction with a previously published night to investigate the temporal behavior of these emissions. The observations were all conducted using the near-infrared spectrometer NIRSPEC on the W.M. Keck II telescope. The integrated emitted intensity for this band varies from 0.8×1027 to 2.4×1027 photons/s, with a possible link to variations in Loki's infrared brightness. The band-shapes imply rotational temperatures of 550-1000 K for the emitting gas, lending further evidence to a volcanic origin for sulfur monoxide. An attempt to detect the B1Σ→X3Σ transition of SO at 0.97 μm was unsuccessful; simultaneous detection with the 1.707 μm band would permit determination of the SO column abundance.  相似文献   

6.
Io's sodium clouds result mostly from a combination of two atmospheric escape processes at Io. Neutralization of Na+ and/or NaX+ pickup ions produces the “stream” and the “jet” and results in a rectangular-shaped sodium nebula around Jupiter. Atmospheric sputtering of Na by plasma torus ions produces the “banana cloud” near Io and a diamond-shaped sodium nebula. Charge exchange of thermal Na+ with Na in Io's atmosphere does not appear to be a major atmospheric ejection process. The total ejection rate of sodium from Io varied from 3×1026 to 25×1026 atoms/s over seven years of observations. Our results provide further evidence that Io's atmospheric escape is driven from collisionally thick regions of the atmosphere rather than from the exosphere.  相似文献   

7.
The modeling of thermal emission from active lava flows must account for the cooling of the lava after solidification. Models of lava cooling applied to data collected by the Galileo spacecraft have, until now, not taken this into consideration. This is a flaw as lava flows on Io are thought to be relatively thin with a range in thickness from ∼1 to 13 m. Once a flow is completely solidified (a rapid process on a geological time scale), the surface cools faster than the surface of a partially molten flow. Cooling via the base of the lava flow is also important and accelerates the solidification of the flow compared to the rate for the ‘semi-infinite’ approximation (which is only valid for very deep lava bodies). We introduce a new model which incorporates the solidification and basal cooling features. This model gives a superior reproduction of the cooling of the 1997 Pillan lava flows on Io observed by the Galileo spacecraft. We also use the new model to determine what observations are necessary to constrain lava emplacement style at Loki Patera. Flows exhibit different cooling profiles from that expected from a lava lake. We model cooling with a finite-element code and make quantitative predictions for the behavior of lava flows and other lava bodies that can be tested against observations both on Io and Earth. For example, a 10-m-thick ultramafic flow, like those emplaced at Pillan Patera in 1997, solidifies in ∼450 days (at which point the surface temperature has cooled to ∼280 K) and takes another 390 days to cool to 249 K. Observations over a sufficient period of time reveal divergent cooling trends for different lava bodies [examples: lava flows and lava lakes have different cooling trends after the flow has solidified (flows cool faster)]. Thin flows solidify and cool faster than flows of greater thickness. The model can therefore be used as a diagnostic tool for constraining possible emplacement mechanisms and compositions of bodies of lava in remote-sensing data.  相似文献   

8.
Between 1999 and 2002, the Galileo spacecraft made 6 close flybys of Io during which many observations of Io's thermal radiation were made with the photopolarimeter-radiometer (PPR). While the NIMS instrument could measure thermal emission from hot spots with T>200 K, PPR was the only Galileo instrument capable of mapping the lower temperatures of older, cooling lava flows, and the passive background. We tabulate all data taken by PPR of Io during these flybys and describe some scientific highlights revealed by the data. The data include almost complete coverage of Io at better than 250 km resolution, with extensive regional coverage at higher resolutions. We found a modest poleward drop in nighttime background temperatures and evidence of thermal inertia variations across the surface. Comparison of high spatial resolution temperature measurements with observed daytime SO2 gas pressures on Io provides evidence for local cold trapping of SO2 frost on scales smaller than the 60 km resolution of the PPR data. We also calculated the power output from several hot spots and estimated total global heat flow to be about 2.0-2.6 W m−2. The low-latitude diurnal temperature variations for the regions between obvious hot spots are well matched by a laterally-inhomogeneous thermal model with less than 1 W m−2 endogenic heat flow.  相似文献   

9.
P.E. Geissler  M.T. McMillan 《Icarus》2008,197(2):505-518
Io's volcanic plumes erupt in a dazzling variety of sizes, shapes, colors and opacities. In general, the plumes fall into two classes, representing distinct source gas temperatures. Most of the Galileo imaging observations were of the smaller, more numerous Prometheus-type plumes that are produced when hot flows of silicate lava impinge on volatile surface ices of SO2. Few detections were made of the giant, Pele-type plumes that vent high temperature, sulfur-rich gases from the interior of Io; this was partly because of the insensitivity of Galileo's camera to ultraviolet wavelengths. Both gas and dust spout from plumes of each class. Favorably located gas plumes were detected during eclipse, when Io was in Jupiter's shadow. Dense dust columns were imaged in daylight above several Prometheus-type eruptions, reaching heights typically less than 100 km. Comparisons between eclipse observations, sunlit images, and the record of surface changes show that these optically thick dust columns are much smaller in stature than the corresponding gas plumes but are adequate to produce the observed surface deposits. Mie scattering calculations suggest that these conspicuous dust plumes are made up of coarse grained “ash” particles with radii on the order of 100 nm, and total masses on the order of 106 kg per plume. Long exposure images of Thor in sunlight show a faint outer envelope apparently populated by particles small enough to be carried along with the gas flow, perhaps formed by condensation of sulfurous “snowflakes” as suggested by the plasma instrumentation aboard Galileo as it flew through Thor's plume [Frank, L.A., Paterson, W.R., 2002. J. Geophys. Res. (Space Phys.) 107, doi:10.1029/2002JA009240. 31-1]. If so, the total mass of these fine, nearly invisible particles may be comparable to the mass of the gas, and could account for much of Io's rapid resurfacing.  相似文献   

10.
Since before the beginning of the Galileo spacecraft’s Jupiter orbital tour, we have observed Io from the ground using NASA’s Infrared Telescope Facility (IRTF). We obtained images of Io in reflected sunlight and in-eclipse at 2.3, 3.5, and 4.8 μm. In addition, we have measured the 3.5 μm brightness of an eclipsed Io as it is occulted by Jupiter. These lightcurves enable us to measure the brightness and one-dimensional location of active volcanoes on the surface. During the Galileo era, two volcanoes were observed to be regularly active: Loki and either Kanehekili and/or Janus. At least 12 other active volcanoes were observed for shorter periods of time, including one distinguishable in images that include reflected sunlight. These data can be used to compare volcano types and test volcano eruption models, such as the lava lake model for Loki.  相似文献   

11.
Giovanni Leone  Lionel Wilson 《Icarus》2011,211(1):623-635
We solve numerically the equations describing the transfer of heat through the lithosphere of Io by a mixture of conduction and volcanic advection as proposed by O’Reilly and Davies (O’Reilly, T.C., Davies, G.F. [1981]. Geophys. Res. Lett. 8, 313-316), removing the requirement that average material properties must be used. As expected, the dominance of advective heat transfer by volcanic eruptions means that Io’s geothermal gradient well away from volcanic centres is very small, of order 1 K km−1. This result is independent of any reasonable assumptions about the radiogenic heating rate in the lithosphere. The lithosphere temperature does not increase greatly above the surface temperature until the base of the lithosphere is approached, except in limited areas around shallow magma bodies. As a consequence, solid volatile sulphur compounds mobilized by volcanic processes and re-deposited on the surface of Io commonly remain solid until they reach great depths as they are progressively buried by ongoing activity. For current estimates of the volcanic heat transfer rate, melting of SO2 does not begin until a depth of ∼20 km and sulphur remains solid to a depth of ∼26 km in a 30 km thick lithosphere. Rising magmas can incorporate fluids from these deep sulphur compound aquifers, and we quantify the major influence that this can have on the bulk density of the magma and hence the resulting possible intrusion and eruption styles.  相似文献   

12.
More than 500 images of Io in eclipse were acquired by the Cassini spacecraft in late 2000 and early 2001 as it passed through the jovian system en route to Saturn (Porco et al., 2003, Science 299, 1541-1547). Io's bright equatorial glows were detected in Cassini's near-ultraviolet filters, supporting the interpretation that the visible emissions are predominantly due to molecular SO2. Detailed comparisons of laboratory SO2 spectra with the Cassini observations indicate that a mixture of gases contribute to the equatorial emissions. Potassium is suggested by new detections of the equatorial glows at near-infrared wavelengths from 730 to 800 nm. Neutral atomic oxygen and sodium are required to explain the brightness of the glows at visible wavelengths. The molecule S2 is postulated to emit most of the glow intensity in the wavelength interval from 390 to 500 nm. The locations of the visible emissions vary in response to the changing orientation of the external magnetic field, tracking the tangent points of the jovian magnetic field lines. Limb glows distinct from the equatorial emissions were observed at visible to near-infrared wavelengths from 500 to 850 nm, indicating that atomic O, Na, and K are distributed across Io's surface. Stratification of the atmosphere is demonstrated by differences in the altitudes of emissions at various wavelengths: SO2 emissions are confined to a region close to Io's surface, whereas neutral oxygen emissions are seen at altitudes that reach up to 900 km, or half the radius of the satellite. Pre-egress brightening demonstrates that light scattered into Jupiter's shadow by gases or aerosols in the giant planet's upper atmosphere contaminates images of Io taken within 13 minutes of entry into or emergence from Jupiter's umbra. Although partial atmospheric collapse is suggested by the longer timescale for post-ingress dimming than pre-egress brightening, Io's atmosphere must be substantially supported by volcanism to retain auroral emissions throughout the duration of eclipse.  相似文献   

13.
When the flowing torus plasma encounters the upper atmosphere of Jupiter's moon, Io, newly created ions are rapidly accelerated by the motional electric field. Many of these ions are reneutralized and form a spray of fast neutrals that travel far away from Io before being reionized by photoionization and impact. These ions, now far from Io, are unstable to the generation of ion cyclotron waves. These waves in turn act as a mass spectrometer allowing Galileo magnetic measurements to be used to probe the composition of the atmosphere of Io and how it varies in time and in space. We now have six Galileo passes by Io on which we have measurements with sufficient cadence to examine the ion cyclotron waves. One of these passes, on Galileo's 32nd orbit has not been discussed previously. These passes provide sufficient observations to begin to distinguish the sources of variability. We find that while the atmosphere of Io varies temporally throughout the mission, it also has a spatial variation in composition at any instant of time.  相似文献   

14.
S. Takahashi  H. Misawa  A. Morioka  R. Sood 《Icarus》2005,178(2):346-359
We report on two-dimensional imaging observations of D-line emissions from the extended distribution of iogenic sodium atoms with two fields of view (±20 RJ (narrow FOV) and ±400 RJ (wide FOV)) simultaneously by using a portable small telescope or camera lens. We derived dynamic feature of the band-shaped and spray-shaped distributions near Io's orbit by means of continuous observation. The observations confirm the phenomenological behavior of the sodium cloud on two spatial scales, as previously observed by Pilcher et al. [Pilcher, C.B., Smyth, W.H., Combi, M.R., Fertel, J.H., 1984. Astrophys. J. 287, 427-444], Schneider et al. [Schneider, N.M., Trauger, J.T., Wilson, J.K., Brown, D.I., Evans, R.W., Shemansky, D.E., 1991. Science 253, 1394-1397], and Mendillo et al. [Mendillo, M., Baumgartner, J., Flynn, B., Hughes, W.S., 1990. Nature 348, 312-314]. We also confirm an elongated oval emission distribution of the sodium nebula and derivation of its detailed east-west asymmetry depending on Io's phase angle, which was first noted by Flynn et al. [Flynn, B., Mendillo, M., Baumgartner, J., 1994. J. Geophys. Res. 99, 8403-8409]. We then did model analyses to investigate the source process for sodium atoms and the dynamics behind their distribution. We conclude that the essential of molecular ion mechanisms to the band-shaped distribution is in agreement with Wilson and Schneider [Wilson, J.K., Schneider, N.M., 1999. J. Geophys. Res. 104, 16567-16583]. We differ from Wilson et al. [Wilson, J.K., Mendillo, M., Baumgartner, J., Schneider, N.M., Trauger, J.T., Flynn, B., 2002. Icarus 157, 476-489] in finding that charge exchange process contributes more to the spray-shaped distribution and sodium nebula than sputtering does. These results derived the double-peaked velocity distribution of released sodium atoms, and re-confirmed the source rates in agreement with past studies.  相似文献   

15.
The spatial extent of ion cyclotron waves at Io has been interpreted as requiring a multistep acceleration and transport process: exospheric ions are accelerated outward (relative to Jupiter) due to the corotation electric field, neutralized due to charge exchange in the surrounding exosphere, and then reionized after traveling far across magnetic field lines, at which point they generate the waves. The trajectories of the particles away from Io are sensitive to the location of their initial ionization. This paper examines the spatial distributions of fast neutrals produced under varying conditions in order to provide constraints on the possible structure and nature of the Io exosphere. While a rapid onset of cyclotron waves at a specific location around Io can be modeled with a single, point-source region of ions, such as might occur over a volcano, the regional extent of the waves suggests multiple or distributed sources.  相似文献   

16.
Using speckle imaging techniques on the 10-m W.M. Keck I telescope, we observed near-infrared emission at 2.2 μm from volcanic hotspots on Io in July-August 1998. Using several hundreds of short-exposure images we reconstructed diffraction-limited images of Io on each of three nights. We measured the positions of individual hotspots to ±0.004″ or better, corresponding to a relative positional error of ∼20 km on Io's surface. The sensitivity of normal ground-based images of Io is limited by confusion between overlapping sources; by resolving these multiple points we detected up to 17 distinct hotspots, the largest number ever seen in a single image.During the month-long span of our 1998 observations, several events occurred. Loki was at the end of a long brightening, and we observed it to fade in flux by a factor of 2.8 over the course of one month. At the 3-sigma level we see evidence that Loki's position shifts by ∼100 km. This suggests that the brightening may not have been located at the “primary” Loki emission center but at a different source within the Loki caldera. We also see a bright transient source near Loki. Among many other sources we detect a dim source on the limb of Io at the latitude of Pele; this source is consistent with 2.7% of the thermal emission from the Pele volcano complex being scattered by the Pele plume, which would be the first detection of a plume through scattered infrared hotspot emission.  相似文献   

17.
We produced regional geologic maps of the Hi’iaka and Shamshu regions of Io’s antijovian hemisphere using Galileo mission data to assess the geologic processes that are involved in the formation of Io’s mountains and volcanic centers. Observations reveal that these regions are characterized by several types of volcanic activity and features whose orientation and texture indicate tectonic activity. Among the volcanic features are multiple hotspots and volcanic vents detected by Galileo, one at each of the major paterae: Hi’iaka, Shamshu, and Tawhaki. We mapped four primary types of geologic units: flows, paterae floors, plains, and mountains. The flows and patera floors are similar, but are subdivided based upon emplacement environments and mechanisms. The floors of Hi’iaka and Shamshu Paterae have been partially resurfaced by dark lava flows, although portions of the paterae floors appear bright and unchanged during the Galileo mission; this suggests that the floors did not undergo complete resurfacing as flooding lava lakes. However, the paterae do contain compound lava flow fields and show the greatest activity near the paterae walls, a characteristic of Pele type lava lakes. Mountain materials are tilted crustal blocks that exhibit varied degrees of degradation. Lineated mountains have characteristic en echelon grooves that likely formed as a result of gravitational sliding. Undivided mountains are partially grooved but exhibit evidence of slumping and are generally lower elevation than the lineated units. Debris lobes and aprons are representative of mottled mountain materials. We have explored the possibility that north and south Hi’iaka Mons were originally one structure. We propose that strike-slip faulting and subsequent rifting separated the mountain units and created a depression which, by further extension during the rifting event, became Hi’iaka Patera. This type of rifting and depression formation is similar to the mechanism of formation of terrestrial pull-apart basins. With comparison to other regional maps of Io and global studies of paterae and mountains, this work provides insight into the general geologic evolution of Io.  相似文献   

18.
We produced a regional geologic map of the Zal region of Io's antijovian hemisphere using Galileo mission data. We discuss the geologic features, summarize the map units and structures that are present, discuss the nature of volcanic activity, and present an analysis of the volcanic, tectonic, and gradational processes that affect the region. The Zal region consists of five primary types of geologic materials: plains, mountains, paterae floors, flows, and diffuse deposits. The flows and patera floors are similar, but are subdivided based on uncertainties regarding emplacement environments and mechanisms. The Zal region includes two hotspots detected by Galileo: one along the western scarp of the Zal Patera volcano and one at the Rustam Patera volcano (name submitted to IAU). A third hotspot at the nearby At'am Patera volcano (name submitted to IAU) is the source of diffuse and pyroclastic materials that blanket north Zal Mons. The western bounding scarp of Zal Patera is the location of a fissure vent that is the source of multiple silicate lava flows. The floor of Zal Patera has been partially resurfaced by dark lava flows, although portions of the patera floor appear bright and unchanged during the Galileo mission. This suggests that the floor did not undergo complete resurfacing as a flooding lava lake but does contain a compound flow field. Mountain materials exhibit stages of degradation; lineated material degrades into mottled material. We have explored the possibility that north and south Zal Mons were originally one structure. We propose that strike-slip faulting and subsequent rifting separated the mountain units, opened a fissure which serves as a vent for lava flow, and created a depression which, by further extension during the rifting event, became Zal Patera. With comparison to other regional maps of Io, this work provides insight into the general geologic evolution of Io.  相似文献   

19.
Ultraviolet and near-infrared observations of auroral emissions from the footprint of Io's magnetic Flux Tube (IFT) mapping to Jupiter's ionosphere have been interpreted via a combination of the unipolar inductor model [Goldreich, P., Lynden-Bell, D., 1969. Astrophys. J. 156, 59-78] and the multiply-reflected Alfvén wave model [Belcher, J.W., 1987. Science 238, 170-176]. While both models successfully explain the general nature of the auroral footprint and corotational wake, and both predict the presence of multiple footprints, the details of the interaction near Io are complicated [Saur, J., Neubauer, F.M., Connerney, J.E.P., Zarka, P., Kivelson, M.G., 2004. In: Bagenal, F., Dowling, T.E., McKinnon, W.B. (Eds.), Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press, Cambridge, UK, pp. 537-560; Kivelson, M.G., Bagenal, F., Kurth, W.S., Neubauer, F.M., Paranicas, C., Saur, J., 2004. In: Bagenal, F., Dowling, T.E., McKinnon, W.B. (Eds.), Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press, Cambridge, UK, pp. 513-536]. The auroral footprint brightness is believed to be a good remote indicator of the strength of the interaction near Io, indicating the energy and current strength linking Io with Jupiter's ionosphere. The brightness may also depend in part on local auroral acceleration processes near Jupiter. The relative importance of different physical processes in this interaction can be tested as Jupiter's rotation and Io's orbital motion shift Jupiter's magnetic centrifugal equator past Io, leading to longitudinal variations in the plasma density near Io and functionally different variations in the local field strength near Jupiter where the auroral emissions are produced. Initial HST WFPC2 observations found a high degree of variability in the footprint brightness with time, and some evidence for systematic variations with longitude [Clarke, J.T., Ben Jaffel, L., Gérard, J.-C., 1998. J. Geophys. Res. 103, 20217-20236], however the data were not of sufficient quality to determine functional relationships. In this paper we report the results from a second, more thorough study, using a series of higher resolution and sensitivity HST STIS observations and a model for the center to limb dependence of the optically thin auroral emission brightness based on measurements of the auroral curtain emission distribution with altitude. A search for correlations between numerous parameters has revealed a strong dependence between Io's position in the plasma torus and the resulting footprint brightness that persists over several years of observations. The local magnetic field strength near Jupiter (i.e. the size of the loss cone) and the expected north/south asymmetry in auroral brightness related to the path of currents generated near Io through the plasma torus en route to Jupiter appear to be less important than the total plasma density near Io. This is consistent with the near-Io interaction being dominated by collisions of corotating plasma and mass pickup, a long-standing view which has been subject to considerable debate. The brightness of the auroral footprint emissions, however, does not appear to be proportional to the incident plasma density or energy, and the interpretation of this result will require detailed modeling of the interaction near Io.  相似文献   

20.
P.M. Schenk  R.R. Wilson 《Icarus》2004,169(1):98-110
Stereo and photoclinometry derived topography of shield-like volcanoes on Io indicate little relief (<3 km) and very low slopes (0.2° to 0.6°). Several shield volcanoes appear to be associated with broad rises of 1 to 3 km, but only 5 shield volcanoes have been identified with steep flank slopes (between 4° and 10°). These steep slopes are restricted to within 20-30 km of the summit, but where discernable, most of the lava flows observed on these edifices occur on the outer flanks where slopes are less than a degree. Despite their abundance, ionian shield volcanoes are among the flattest in the Solar System. The steepest volcanoes on Io are most comparable to large venusian shield volcanoes. Using simplistic Bingham rheologies we estimate the viscosity and yield strengths of ionian lavas. Yield strengths are estimated at 101-102 Pa, lower than most basaltic lavas. Viscosity estimates range from 103 to 105 Pa s, although these are probably upper limits. Actual values may have been as low as 100 Pa s. Viscosity is sensitive to flow velocity, which is poorly known on Io. The best constraint on flow velocity comes from observations of the 1997 Pillan eruption, which bracket the eruptive phase to 132 day maximum, and more probably less than 50 days. Low slopes, long run-out distances and our estimated rheologic properties are consistent with (but not proof of) a low silica, low viscosity, high temperature composition for ionian lavas, supporting arguments for low-silica lava compositions such as basalt or komatiite. We cannot eliminate sulfur on rheologic grounds, however.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号