首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A wide range of stoichiometries has been previously proposed for soluble iron sulfide species and there is no general agreement on their importance in natural waters. The solubility of Fe(II) in 0.1 M NaClO4 equilibrated at 20 - 0.1°C with various partial pressures of H2S (0.1, 0.001, 0.0001, 0.00001 MPa) was measured in the pH range 3.1-7.9. Equilibrium was established within 1-6 h when amorphous FeS was the solid phase. The results could all be fitted using values for the solubility product constant (I = 0) of p*Ks = 3.00 - 0.12 and of the stability constant for a soluble Fe(HS) 2 species (I = 0) of p#2 = -6.45 - 0.12 where *Ks = aFe2+ · aHS-/aH+ and #2 = aFe(HS) 2/aFe2+ · (aHS-)2. Any soluble species of the form Fex (HS) 2x where x = &gif1; would fit the data equally well. Measurements at different partial pressures are inconsistent with labile species of the form FexSx. There was no evidence for a Fe(HS) + species. When a solution is saturated with respect to amorphous FeS, Fe(HS) 2 will only be a significant proportion of Fe(II) when S(-II) is higher than 0.2mmoll-1. The constants for Fe(HS) 2 or Fex (HS) 2x (x S 2) are consistent with all freshwater data where constant values of measured ion activity products provide no evidence for soluble complex formation. For marine waters with high sulfide concentrations (S 6mmol l-1), measured concentrations of Fe(II) are consistent with there being negligible soluble iron sulfide. The data are better fitted if the dissolved species are polymeric as predicted concentrations of the monomer Fe(HS) 2 are significant. These findings suggest that rather than the dissolved species being Fe(HS) 2, it is probably polymeric, that is Fex (HS) 2x (x S 2).  相似文献   

2.
-- The study addresses the evaluation of earthquake hazard parameters such as maximum regional magnitude (Mmax) and the slope of Gutenberg-Richter law # (where b=# log e) for the Hellenic Wadati-Benioff zone and the overriding lithospheric plate in the area of Crete and its surroundings. The seismicity of the area is divided in a cellular (1.0° 2 1.0°) manner allowing analysis of the localized earthquake hazard parameters and graphical representation of their spatial variation. Our approach incorporates the recently updated earthquake catalogue for Greece and the adjacent areas, the consideration of the morphology of the deep seismically active structures in the studied area and use of a probabilistic procedure for estimating the earthquake hazard parameters.¶One of the main inconsistencies in the earthquake hazard assessment is the estimation of the maximum magnitude and the related uncertaint y. The Bayesian approach, applied in the present, is a straightforward technique for evaluating the earthquake hazard parameters and is based on the following assumptions: Poissonian character of seismic events flow, a frequency-magnitude law of Gutenberg-Richter's type with cutoff maximal value for estimated parameter and a seismic catalogue, having a rather sizeable number of events (i.e., 50 events at least per cell). For five cells in which the number of events is less than 50, an effort is made to produce synthetic data. The re-assessed parameters obtained from the synthetic data show no significant difference and the real data (of the five cells) are finally taken into account although the estimated uncertainty is high.¶For four random cells we constructed hazard curves showing the probabilities that a certain magnitude M will be exceeded in one year and the return periods (in years) that are expected for a given magnitude. These are particularly useful for the mapping of earthquake hazard in regions of either low or high seismic activity, as is Crete and the adjacent area.¶The obtained results show that the W and E parts of both subducting and overriding plates differ in the spatial distribution of all the estimated earthquake hazard parameters. The Mmax distribution indicates strong coupling between the western portions of the interacting plates (Mmax > 6.3) to the south of 36°N. The smaller values of Mmax (Mmax < 6.3) estimated in the SE part of the studied area indicate weak coupling between the eastern portions of the subducting and overriding plates.¶Values of b > 1.0 are found to the south and east of Crete for the Wadati-Benioff zone, and over the central part of the island and the area to the northeast of it (cell 11) for the continental wedge, which suggests nonuniform stress field and/or heterogeneous material.  相似文献   

3.
--Extensive hydrogeological, geochemical, radiometric and hydro-isotope investigations in the Vogtland region, Germany, since 1989 suggest a fluid connection between a special epicentral area (focal depth: 3-15 km; ML < 5) and a mineral spring at Bad Brambach. Twenty-six hydrogeochemical anomalies are related to earthquakes/swarmquakes of that epicentral area near Novy Kostel (CZ) during the last 9 years. The anomalies were originated by a slug-flow process in the fluid-filled fracture system near the surface. The gas component of the observed fluid (99 vol. % CO2) is of upper mantle/crustal origin. The fluid transport pathway to the surface is the seismically active Mariánské Lázné fault zone. The interpretation suggests an influence of the fluid system due to earthquake preparation processes.  相似文献   

4.
-- On a plexiglass sample, a penetrating crack was prefabricated by laser. The crack is inclined towards the major principal stress †1(†y) at an angle of about 30°. Using this sample and by means of shadow optical method of caustics and microcrack location, the process zone, nucleation zone and plastic area of earthquakes were studied experimentally, and the strain variation in the shadow area was monitored. From the result, we comprehend the following. When the stress †y was increased to a certain value, shadow areas were formed around the prefabricated crack and at its tips, with that at the tips being larger. These shadow areas become larger with the increase of load and smaller with unloading. In the shadow area the strain was inhomogeneous: it was very large in some places but very small in others. When the shadow area reached a critical state, microcracks appeared at the tips of the prefabricated crack. Microcracks appeared on one side of the prefabricated crack where the strain and the shadow were both smaller. The zone with concentrated microcracks, or the process zone, was always located at the crack tip; this zone together with a half length of the original crack formed the nucleation zone which fell into the shadow area but was smaller than it. The shadow optical area of caustics bears a certain quantitative relation with the plastic area. Therefore, if an appropriate method is available to obtain the shadow optical area of caustics, it would be possible to detect the area with strong differential deformation change, and hence to determine the zone where strong fracture (an earthquake) would take place.  相似文献   

5.
--We have examined the digital waveform data and relocated a number of events within the June 1987 earthquake swarm, which occurred beneath the northern part of Lake Aswan, 70 km southwest of the Aswan High Dam in Egypt. This swarm occurred between June 17th and 19th with a maximum magnitude event of "ML"=3.5.¶Cross correlation between a chosen master and the analyzed events has been carried out on seismograms from stations of the Aswan network. The cross correlation demonstrates the presence of a difference in both the P wave ((tp) and the S wave ((ts) arrival times at each station in the network relative to the arrival times of the master event at the same stations. (tp ranges between т.15 and 0.11 second, while (ts ranges between т.17 and 0.11 second.¶The primary interpretation is that the se time differences represent an error in the manually picking arrival times. Then, (tp and (ts values for each event result from a change in the hypocentral parameters from those of the master event, assuming the P- and S-wave velocity distribution remains constant during the swarm activity. This interpretation enables us to determine the relative distribution of hypocenters with respect to the hypocentral location of the master event. We present the results from a swarm of 9 events demonstrating they originate from a nearly unique location, rather than the zone identified from the preliminary locations which used manually picked onset times.  相似文献   

6.
v--v Continuous seismic threshold monitoring is a technique that has been developed over the past several years to assess the upper magnitude limit of possible seismic events that might have occurred in a geographical target area. The method provides continuous time monitoring at a given confidence level, and can be applied in a site-specific, regional or global context.¶In this paper (Part 1) and a companion paper (Part 2) we address the problem of optimizing the site-specific approach in order to achieve the highest possible automatic monitoring capability of particularly interesting areas. The present paper addresses the application of the method to cases where a regional monitoring network is available. We have in particular analyzed events from the region around the Novaya Zemlya nuclear test site to develop a set of optimized processing parameters for the arrays SPITS, ARCES, FINES, and NORES. From analysis of the calibration events we have derived values for beam-forming steering delays, filter bands, short-term average (STA) lengths, phase travel times (P and S waves), and amplitude-magnitude relationships for each array. By using these parameters for threshold monitoring of the Novaya Zemlya testing area, we obtain a monitoring capability varying between mb 2.0 and 2.5 during normal noise conditions.¶The advantage of using a network, rather than a single station or array, for monitoring purposes becomes particularly evident during intervals with high global seismic activity (aftershock sequences), high seismic noise levels (wind, water waves, ice cracks) or station outages. For the time period November-December 1997, all time intervals with network magnitude thresholds exceeding mb 2.5 were visually analyzed, and we found that all of these threshold peaks could be explained by teleseismic, regional, or local signals from events outside the Novaya Zemlya testing area. We could therefore conclude within the confidence level provided by the method, that no seismic event of magnitude exceeding 2.5 occurred at the Novaya Zemlya test site during this two-month time interval.¶As an example of particular interest in a monitoring context, we apply optimized threshold processing of the SPITS array for a time interval around 16 August 1997 mb 3.5 event in the Kara Sea. We show that this processing enables us to detect a second, smaller event from the same site (mb 2.6), occurring about 4 hours later. This second event was not defined automatically by standard processing.  相似文献   

7.
--Measurements on drop size spectra were made in cumulus clouds over Pune (inland) region on many days during the summer monsoon seasons. In this paper, the measurements in non-raining cumulus clouds made in the years 1984, 1985 and 1986 at different levels and for different cloud thickness have been studied. In general, the drop size spectra broadened with height and the concentration of drops with diameter > 50 wm (NL), mean volume diameter (MVD), liquid water content (LWC) and dispersion increased with height while the concentration of drops with diameter < 20 wm (NS) and the total concentration of drops (NT) decreased with height. The average drop size distributions were unimodal at the lower levels while they were bimodal at the higher levels. High water contents were confined to drops in the size range 5-25 wm at both higher and lower levels. The average drop size spectra were broader and NL, LWC, MVD and dispersion greater while NT and NS smaller for thicker clouds (range of vertical extent 1.1-2.1 km) as compared to those for thinner clouds (range of vertical extent 0.3-1.1 km). Water contents for the drops > 28 wm were higher while those for the drops > 28 wm lower in thicker clouds than in thinner clouds. The average drop size distributions were bimodal in the former case, while they were unimodal in the other case.  相似文献   

8.
-- A new technique for the parallel computing of 3-D seismic wave propagation simulation is developed by hybridizing the Fourier pseudospectral method (PSM) and the finite-difference method (FDM). This PSM/FDM hybrid offers a good speed-up rate using a large number of processors. To show the feasibility of the hybrid, a numerical 3-D simulation of strong ground motion was conducted for the 1999 Chi-Chi, Taiwan earthquake (Mw 7.6). Comparisons between the simulation results and observed waveforms from a dense strong ground motion network in Taiwan clearly demonstrate that the variation of the subsurface structure and the complex fault slip distribution greatly affect the damage during the Chi-Chi earthquake. The directivity effect of the fault rupture produced large S-wave pulses along the direction of the rupture propagation. Slips in the shallow part of the fault generate significant surface waves in Coastal Plain along the western coast. A large velocity gradient in the upper crust can propagate seismic waves to longer distances with minimum attenuation. The S waves and surface waves were finally amplified further by the site effect of low-velocity sediments in basins, and caused the significant disasters.  相似文献   

9.
--The earthquake generation cycle consists of tectonic loading, quasi-static rupture nucleation, dynamic rupture propagation and stop, and subsequent stress redistribution and fault restrengthening. From a macroscopic point of view, the entire process of earthquake generation cycles should be consistently described by a coupled nonlinear system of a slip-response function, a fault constitutive law and a driving force. On the basis of such a general idea, we constructed a realistic 3-D simulation model for earthquake generation cycles at a transcurrent plate boundary by combining the viscoelastic slip-response function derived for a two-layered elastic-viscoelastic structure model, the slip- and time-dependent fault constitutive law that has an inherent mechanism of fault restrengthening, and the steady relative plate motion as a driving force into a single closed system. With this model we numerically simulated the earthquake generation cycles repeated in a seismogenic region on a plate interface, and examined space-time changes in shear stress, slip deficits and fault constitutive properties during one complete cycle in detail. The occurrence of unstable dynamic slip brings about decrease both in fault strength and shear stress to a constant residual level. After the arrest of dynamic slip, the breakdown strength drop j†p of fault is restored rapidly and the process of stress accumulation resumes in the seismogenic region. On the other hand, the restoration of the critical weakening displacement Dc proceeds gradually with time through the interseismic period. The restoration of Dc can be regarded as the macroscopic manifestation of the microscopic recovery process of fractal fault surface structure. Through numerical simulation with a multi-segmented fault model, we examined the effects of viscoelastic fault-to-fault interaction. The effect of transient viscoelastic stress transfer through the asthenosphere is significant as well as the direct effect of elastic stress transfer, and it possibly explains the time lag of the sequential occurrence of large events along a plate boundary.  相似文献   

10.
Application of Regional Phase Amplitude Tomography to Seismic Verification   总被引:1,自引:0,他引:1  
v--vWe have applied tomographic techniques to amplitude data to quantify regional phase path effects for use in source discrimination studies. Tomography complements interpolation (kriging) methods by extending our ability to apply path corrections into regions devoid of calibration events, as well as raising levels of confidence in the corrections because of their more physical basis. Our tomography technique solves for resolvable combinations of attenuation, source-generation, site and spreading terms. First difference regularization is used to remove singularities and reduce noise effects.¶In initial tests the technique was applied to a data set of 1488, 1.0 Hz, Pg/Lg amplitude ratios from 13 stations for paths inside a 30° by 40° box covering western China and surrounding regions. Tomography reduced variance 60%, relative to the power-law distance correction traditionally applied to amplitude ratios. Relative Pg/Lg attenuation varied with geologic region, with low values in Tibet, intermediate values in basins and high values for platforms and older crust. Spatial patterns were consistent with previous path effect studies in Asia, especially local earthquake coda-Q. Relative spreading was consistent with expected values for Pg and Lg. Relative site terms were similar to one another, yet some tradeoff with attenuation was evident.¶Tomography residuals followed systematic trends with distance, which may result from the evolution from direct to coda phases, focusing, model tradeoff or data windowing effects. Examination of the residuals using a kriging interpolator showed coherent geographical variations, indicating unmodeled path effects. The residual patterns often follow geological boundaries, which could result from attenuating zones or minor blockages that are too thin to be resolved, or that have anisotropic effect on regional phases. These results will guide efforts to reparameterize tomography models to more effectively represent regional wave attenuation and blockage. The interpolated residuals also can be combined with predictions of the tomographic model to account for path effects in discrimination studies on a station by station basis.  相似文献   

11.
v--vThis second paper (Part 2) pertaining to optimized site-specific threshold monitoring addresses the application of the method to regions covered by a teleseismic or a combined regional-teleseismic network. In the first paper (Part 1) we developed the method for the general case, and demonstrated its application to an area well-covered by a regional network (the Novaya Zemlya nuclear test site). In the present paper, we apply the method to the Indian and Pakistani nuclear test sites, and show results during the periods of nuclear testing by these two countries in May 1998. Since the coverage by regional stations in these areas is poor, an optimized approach requires the use of selected, high-quality stations at teleseismic distances.¶To optimize the threshold monitoring of these test sites, we use as calibration events either one of the nuclear explosions or a nearby earthquake. From analysis of the calibration events we derive values for array beamforming steering delays, filter bands, short-term averages (STA) lengths, phase travel times (P waves), and amplitude-magnitude relationships for each station. By applying these parameters, we obtain a monitoring capability of both test sites ranging from mb 2.8-3.0 using teleseismic stations only. When including the nearby Nilore station to monitor the Indian tests, we show that the threshold can be reduced by about 0.4 magnitude units. In particular, we demonstrate that the Indian tests on 13 May, 1998, which were not detected by any known seismic station, must have corresponded to a magnitude (mb) of less than 2.4.¶We also discuss the effect of a nearby aftershock sequence on the monitoring capability for the Pakistani test sites. Such an aftershock sequence occurred in fact on the day of the last Pakistani test (30 May, 1998), following a large (mb 5.5) earthquake in Afghanistan located about 1100 km from the test site. We show that the threshold monitoring technique has sufficient resolution to suppress the signals from these interfering aftershocks without significantly affecting the true peak of the nuclear explosion on the threshold trace.  相似文献   

12.
The relationship between photosynthesis and irradiance was investigated in a strain of the cyanobacterium Planktothrix rubescens isolated from Lake Zürich, using cultures grown on a 12:12-h light-dark cycle. From the photosynthesis-irradiance (P/I) curves, values of the light-affinity coefficient, f, and the maximum rate of photosynthesis, Pm, were determined: in different cultures f ranged from 0.02-0.08 7mol mg-1 h-1 (7mol m-2 s-1)-1 and Pm from 0.6-2.6 7mol mg-1 h-1 (rates of O2 production related to dry biomass). Comparisons made at different phases of the light-dark cycle in individual cultures showed that in the first hour of the light phase f rose by an average of 21 % and Pm by 7 %. In cultures that had been grown in many light-dark cycles, however, the rise occurred only if light was given at the beginning of the notional light phase; cultures kept in darkness showed no rise. It is concluded that the observed increases in f and Pm after dawn were in response to the exogenous irradiance rather than due to endogenous rhythms. These findings are discussed in relation to diel variations in the photosynthetic coefficients of natural populations of P. rubescens in Lake Zürich.  相似文献   

13.
v--vThe special aerological observations carried out as a part of Land Surface Processes Experiment (LASPEX) were used to investigate the thermodynamic structure of the convective boundary layer during the summer monsoon of 1997. The analysis suggested that the convective boundary layer top was found at 700 hPa which was associated with Še minimum and Šes maximum values. Double-mixing line structure was noticed in the conserved variable diagrams which was possibly attributed to the radiative warming/evaporation of falling precipitation.  相似文献   

14.
In this study we assessed the biochemical adaptations of biotic specimens from the hydrothermal vent fields from different geographical zones. Algabacterial and bacterial mats and specimens of bivalves (9 species) and sea urchins (2 species) from different coastal shallow-water fields of hydrothermal activity along the West Rift zones of the Pacific Ocean were sampled to compare biochemical activities to volcanogenic chemical characteristics. The algabacterial and bacterial mat cells and subcellular fractions of bivalve gills and sea urchin guts were measured for 5-aminolevulinic acid (ALA), cytochromes b, (c + c1), (a + a3) and P450 (CYP), and activities of ALA synthetase and CYP-dependent aminopyrine N-demethylase (APND). The algabacterial mats from the Kuril Islands and New Zealand displayed comparable ALA and cytochrome levels and enzyme activities. Similar ALA synthesis, APND activity, and levels of cytochromes b and (c + c1) were observed in bacterial mats from hydrothermal fields from Kuriles, New Britain Island and New Zealand. More active ALA synthesis, APND activity and enhanced content of cytochromes b and (c + c1) and lower levels of CYP were found in bacterial mats than in algabacterial mats. Further, all bivalves influenced by hydrothermal discharges had elevated CYP levels and APND activity as well as a significant increase in ALA content and ALA synthesis (P < 0.05). Statistically sufficient (P < 0.05) alterations in ALA synthesis, APND activity and total CYP level were found in sea urchins under hydrothermal influence. Our findings contribute to the global assessment of hydrothermal effluents on biota and indicate that living conditions near hydrothermal vents accelerate metabolism of bivalves and sea urchins in examined hydrothermal zones in the northern and southern West Pacific Ocean.  相似文献   

15.
The mathematical model for the nearly horizontal circulation due to wind, tides and density gradients in 3-D coastal areas is solved by a combined use of the method of finite elements and the integration in fractional steps. The discretisation of the flow domain is achieved through a system of 1-D finite elements over the depth, z, and 2-D finite elements in x?y space. The differential operators of the momentum equations in x and y, are split and integrated separately in z and x?y dimensions. The method is an extension of a previously presented approach combining finite differences and expansion in series. The application refers to the wind induced circulation in the 3-D coastal basin of Thessaloniki Bay.  相似文献   

16.
-- We propose a thermal-mechanical model of shear deformation of a viscoelastic material to describe the temperature-dependence of friction law. We consider shear deformation of one-dimensional layer composed of a Maxwell linear viscoelastic material under a constant velocity V and temperature Tw at the boundary. The strain rate due to viscous deformation depends both on temperature and shear stress. The temperature inside the layer changes owing to frictional heating and conductive cooling. Steady-state calculations show that the sign of dss/dV, where †ss is steady-state stress, changes from positive to negative as V increases, and that the threshold velocity above which the sign of dss/dV is negative increases with increasing Tw. These results are in accordance with the conjecture that the downdip limit of seismogenic zones is marked by the transition in the sign of dss/dV due to temperature rise with depth. We also find that the response of steady state to a step change in V is quite similar to the response of frictional slip with constitutive laws which employ state variables. These findings suggest that by further improving the present model a model of constitutive relations along faults or plate boundaries can be developed which contains temperature-dependence in a physically-sound manner.  相似文献   

17.
v--vRegional crustal waveguide calibration is essential to the retrieval of source parameters and the location of smaller (M < 4.8) seismic events. This path calibration of regional seismic phases is strongly dependent on the accuracy of hypocentral locations of calibration (or master) events. This information can be difficult to obtain, especially for smaller events. Generally, explosion or quarry blast generated travel-time data with known locations and origin times are useful for developing the path calibration parameters, but in many regions such data sets are scanty or do not exist. We present a method which is useful for regional path calibration independent of such data, i.e. with earthquakes, which is applicable for events down to Mw = 4 and which has successfully been applied in India, central Asia, western Mediterranean, North Africa, Tibet and the former Soviet Union. These studies suggest that reliably determining depth is essential to establishing accurate epicentral location and origin time for events. We find that the error in source depth does not necessarily trade-off only with the origin time for events with poor azimuthal coverage, but with the horizontal location as well, thus resulting in poor epicentral locations. For example, hypocenters for some events in central Asia were found to move from their fixed-depth locations by about 20 km. Such errors in location and depth will propagate into path calibration parameters, particularly with respect to travel times. The modeling of teleseismic depth phases (pP, sP) yields accurate depths for earthquakes down to magnitude Mw = 4.7. This Mw threshold can be lowered to four if regional seismograms are used in conjunction with a calibrated velocity structure model to determine depth, with the relative amplitude of the Pnl waves to the surface waves and the interaction of regional sPmP and pPmP phases being good indicators of event depths. We also found that for deep events a seismic phase which follows an S-wave path to the surface and becomes critical, developing a head wave by S to P conversion is also indicative of depth. The detailed characteristic of this phase is controlled by the crustal waveguide. The key to calibrating regionalized crustal velocity structure is to determine depths for a set of master events by applying the above methods and then by modeling characteristic features that are recorded on the regional waveforms. The regionalization scheme can also incorporate mixed-path crustal waveguide models for cases in which seismic waves traverse two or more distinctly different crustal structures. We also demonstrate that once depths are established, we need only two-stations travel-time data to obtain reliable epicentral locations using a new adaptive grid-search technique which yields locations similar to those determined using travel-time data from local seismic networks with better azimuthal coverage.  相似文献   

18.
-- The main active faults of the Granada Basin are located in its central-eastern sector, where the most important tectonic activity is concentrated, uplifting its eastern part and sinking the western border. Several parameters related to the seismic potentiality of these active, or in some cases probably active, faults in this basin are used for the first time. Many of these faults can generate earthquakes with magnitudes larger than 6.0 MW, although this is not the general case. The fault situated to the N of Sierra Tejeda, probably the one responsible for the big earthquake of 25/12/1884, stands out, because it could generate an earthquake with magnitude 6.9 MW. Although at present all the data needed are not fully known, we consider that the final results show, as a whole, the average expected return periods of the faults in the Granada Basin.  相似文献   

19.
为了更广泛地应用时频峰值滤波方法消减地震勘探记录中强随机噪声,本文比较详细地探讨了该方法在应用时需要处理的时窗选取、一个时窗内局部线性化等主要基础技术问题.经过时变时窗的仿真计算,运用多项指标比较,包括整体背景强弱、振幅谱、信噪比、均方误差、有效子波波峰波谷幅值、畸变程度,综合评价出(L0+Lx)时窗滤波的效果较理想.对于三角波这类简单类型的周期波,其时频峰值滤波效果与边线段平均曲率变化、时窗长度等条件有关,即三角波边线段平均曲率越大,滤波结果的均方误差越大;另外,边线段平均曲率增大时,选取的时窗长度有变小的趋势.总之,在地震勘探中应用时频峰值滤波方法消减强随机噪声时,一方面要合理地选取时窗参数,另一方面时窗参数又不能变化过大,以避免对有效子波波形产生畸变影响.  相似文献   

20.
--In a sand-covered granite terrain of northwestern Rajasthan, India, a five-frequency HLEM survey along a 10-km traverse line generated several clear and strong anomalies. Subjected to a joint constrained 1-D layered earth inversion, the IP and OP frequency soundings at each point of observation yields either no solution or one which is inconsistent with the adjacent point. On the other hand, a 3-D model fitting of these anomalies with a tabular body in a layered host leads to a more meaningful interpretation, suggesting the presence of (1) pockets of weathered conductive material and (2) resistive intruding dykes, embedded in a semi-weathered layer, as the cause of the observed anomalies. The locations of weathered pockets are probably determined by pre-existing weak structures such as joints, fractures and faults, which facilitated movement of groundwater and hence weathering. Thus covered features deep in the bedrock such as intrusives, joints, fractures and faults, which are not directly detectable by the HLEM method, being under a more conductive overburden, are indirectly detected through their imprints left in the overlying weathering profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号