共查询到4条相似文献,搜索用时 2 毫秒
1.
2.
The organic composition and organic‐inorganic interaction in paper mill sludge (PS) solvent extracts (hexane, ethyl acetate, acetone and ethanol) and humic fractions, humic acid (HA) and humin (HU) were studied by electron paramagnetic resonance spectroscopy (EPR), proton and carbon‐13 nuclear magnetic resonance spectroscopy (1H NMR; 13C NMR), Fourier‐transformed infrared spectroscopy (FTIR), and ultraviolet‐visible spectroscopy (UV‐vis). The strategy of fractionating the PS, sequentially, with organic solvents of increasing polarity is a reliable analytical procedure for humic substance sample separation because it results in more purified fractions. FTIR, 1H NMR and 13C NMR results showed that hexane extract consisted mainly of aliphatic hydrocarbon structures. Their contents in the extracts decreased as the polarity of the extracting solvent increased and the content of oxygen functional groups increased. Carboxylic and carboxylate functional groups were found in the acetone extract, and ester and ether functions were predominantly found in the ethanol extract. EPR spectra revealed some Fe3+ complexes with rhombic structure (g1 = 4.3; g2 = 9.0) in the humic fractions and in all solvent extracts, except hexane. Quasi‐octahedral Fe3+ complexes (g = 2.3; ΔHpp ≤ 400 G) were found in the HU fraction and in the acetone extract. The organic free radical content in the HA fraction was higher than the non‐fractionated PS sample and HU fraction. 相似文献
3.
Prediction of areas prone to land degradation in agricultural catchments is a complex task. This is due to the difficulties encountered in data gathering over wide regions and in the translation of existing scientific knowledge to a quantitative and spatially explicit risk assessment system. This paper incorporates the use of remotely sensed data, terrain analysis and a multi‐criteria mechanism for evaluating risks of soil loss, water ponding, and sediment deposition in a mid‐size agricultural Mediterranean catchment, under 80 years of intensive cultivation. The research uses simulations to study the effect of topographic attributes, soil characteristics, vegetation cover, rainfall intensity and human activities on the three above‐mentioned processes. The results show that, from the methodological point of view, the integration of knowledge from several experts yields better predictive results than relying on a single expert, even the one found to be most consistent. Also, the use of a simple weighted linear combination was more useful than the more sophisticated computerized programming technique. From the phenomenological point of view, the increase in rainfall intensity and land‐use transformation from orchard to field‐crops has led to a significant increase in soil loss and sediment yield, while extreme changes in tillage direction have only yielded minor changes in water ponding. The developed system's predictive capabilities also show that the outcomes can be used as a basis for decisions on catchment management in regions of high environmental sensitivity. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
4.
In this report, the capabilities of the adaptively shifted integration (ASI)‐Gauss code in the analysis of the seismic responses of framed structures are verified and validated by comparing the results with detailed numerical simulations performed by the parallel finite element analysis code, E‐Simulator, and with experimental results obtained by E‐Defense. The numerical results obtained by both codes showed good agreement with the experimental results obtained by E‐Defense. Furthermore, seismic waves with unnaturally large magnitudes are applied to a high‐rise building model to demonstrate the ability of the ASI‐Gauss code to analyze the collapse behaviors of building frames. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献