首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
2.
Biosorption using activated sludge biomass (ASB) as a potentially sustainable technology for the treatment of wastewater containing different metal ions (Cd(II), Pb(II) and Zn(II)) was investigated. ASB metal uptake clearly competed with protons consumed by microbial biomass compared with control tests with non‐activated sludge biomass. Biosorption tests confirmed maximum exchange between metal ions and protons at pH 2.0–4.5. It was revealed by the study that the amount of metal ions released from the biomass increased with biomass sludge concentration. The result showed that maximum absorption of metal ions was observed for Cd(II) at pH 3.5, Pb(II) at pH 4.0, and pH 4.5 for Zn(II) ions. The maximum absorption capacities of ASB for Cd(II), Pb(II) and Zn(II) were determined to be 59.3, 68.5 and 86.5%, respectively. The biosorption of heavy metals was directly proportional to ASB stabilization corresponding to a reduction in heavy metals in the order of Cd < Pb < Zn. The order of increase of biosorption of metal ions in ASB was Zn(II) < Pb(II) < Cd(II), and this was opposite to that of non active sludge. The results indicate that ASB is a sustainable tools for the bioremediation of Cd(II), Pb(II) and Zn(II) ions from industrial sludge and wastewater treatment plants.  相似文献   

3.
In this study, Nostoc commune (cyanobacterium) was used as an inexpensive and efficient biosorbent for Cd(II) and Zn(II) removal from aqueous solutions. The effect of various physicochemical factors on Cd(II) and Zn(II) biosorption such as pH 2.0–7.0, initial metal concentration 0.0–300 mg/L and contact time 0–120 min were studied. Optimum pH for removal of Cd(II) and Zn(II) was 6.0, while the contact time was 30 min at room temperature. The nature of biosorbent and metal ion interaction was evaluated by infrared (IR) technique. IR analysis of bacterial biomass revealed the presence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for biosorption of Cd(II) and Zn (II). The maximum biosorption capacities for Cd(II) and Zn(II) biosorption by N. commune calculated from Langmuir biosorption isotherm were 126.32 and 115.41 mg/g, respectively. The biosorption isotherm for two biosorbents fitted well with Freundlich isotherm than Langmuir model with correlation coefficient (r2 < 0.99). The biosorption kinetic data were fitted well with the pseudo‐second‐order kinetic model. Thus, this study indicated that the N. commune is an efficient biosorbent for the removal of Cd(II) and Zn(II) from aqueous solutions.  相似文献   

4.
5.
Results of chemico-biological experiments in a natural water body with the use of model systems with Cu (II) introduced in them at different proportions of its chemical forms (natural and simulated) in the solution. The model forms used in the experiments were Cu complexes with benzyl- and hexadecylmalonic acids, simulating low-molecular dissolved organic substances. The experimental conditions were chosen based on a preliminary calculation using WATEQ–4f program. The complexes of Cu with hexadecylmalonic acid are found to be absorbed by suspensions and removed into bottom sediment more actively than other Cu forms. The toxicity of introduced Cu for the phyto- and zooplanktonic communities is found to depend on the concentration of Cu2+ aqua-ions in the solution, in the presence of which the higher concentrations of complexes with malonic acids do not exert their toxic effect.  相似文献   

6.
Introduction When doing Monte Carlo analysis of stochastic earthquake response of nonlinear structures, it is necessary to have a great number of ground motion processes with an identical statistical feature; In theoretical analysis of earthquake resistance of structures, to study the effect of one parameter, it is required to keep other parameters fixed, and it is often needed one set of ground motion proc-esses having an identical statistical feature; Similarly, while doing structural model…  相似文献   

7.
The possible use of activated alumina powder (AAP) as adsorbent for Cr(III), Ni(II), and Cu(II) from synthetic solutions was investigated. The effect of various parameters on batch adsorption process such as pH, contact time, adsorbent dosage, particle size, temperature, and initial metal ions concentration were studied to optimize the conditions for maximum metal ion removal. Both higher (molar) and lower (ppm) initial metal ion concentration sets were subjected to adsorption on AAP. Adsorption process revealed that equilibrium was established in 50 min for Cr(III) at pH 4.70, 80 min for Ni(II) at pH 7.00, and 40 min for Cu(II) at pH 3.02. Percentage removal was found to be highest at 55°C for Cr(III) and Ni(II) with 420 µm and 45°C for Cu(II) with 250‐µm particle size AAP. A dosage of 2 g for Cr(III), 8 g for Ni(II), and 10 g Cu(II) gave promising data in the metal ion removal. The adsorption process followed Langmuir as well as Freundlich models. The thermodynamics of adsorption of these metal ions on activated aluminum indicated that the adsorption was spontaneous and endothermic in nature. Present study indicates that AAP can act as a promising adsorbent for industrial wastewater treatment.  相似文献   

8.
9.
The complex micro-interfacial interaction theories of heavy metal ions such as Pb(Ⅱ)and Cd(Ⅱ)adsorption on fine sediment in aqueous solution were not systematically investigated.The aim of this work was to reflect the micro-interfacial adsorption characteristics.Sediment samples were collected from an estuary.The Isothermal and kinetics adsorption experiment were done to acquire the data.Isothermal,kinetics,film diffusion and intraparticle diffusion models were adopted to fit the adsorption experimental data.The results indicated that the Langmuir,Freundlich and Temkin models were suitable for analyzing the isothermal experimental data.The maximum adsorption capacities of Pb(Ⅱ)and Cd(Ⅱ)on the sediment were 1.1377 and 0.9821 mg·g-1,respectively.The qm and KL of the Langmuir model,Kf and nF of the Freundlich model,and b and A of the Temkin model all exhibited a power function relationship with the initial adsorbate concentration.The pseudo-second-order model provided a better fit for the experimental kinetics data compared with the fit of the pseudo-first-order and Elovich models.The pseudo-second-order parameters k2 and qe of Pb(Ⅱ)and qe of Cd(Ⅱ)both had a power function relationship with adsorption time,additionally,the k2 of Cd(Ⅱ)had an exponential function relationship with adsorption time.The liquid-film diffusion parameters kfd of Pb(Ⅱ)and Cd(Ⅱ)were 0.0569 and 0.1806 min1,respectively.The intraparticle diffusion parameter kid values of Pb(Ⅱ)and Cd(Ⅱ)were 0.0055 mg$g1$min1/2 and 0.0049 mg$g1$min1/2,respectively.The physical significance of the model parameters showed that Pb(Ⅱ)adsorption on sediment was stronger than Cd(Ⅱ).The results of this study provided a theoretical reference for the micro-interfacial mechanism of heavy metal ion adsorption on sediment.  相似文献   

10.
The adsorption of Cu(II) ions from aqueous solutions by soda lignin as an absorbent using a batch adsorption system is presented in this paper. The soda lignin used in this study was extracted from black liquor derived from oil palm empty fruit bunches (EFB) using 20% v/v sulfuric acid. The effects of varying experimental parameters such as pH value, adsorbent dosage, different concentrations of Cu(II) ions, and agitation period were investigated. The results revealed that the optimum adsorption of Cu(II) onto soda lignin was recorded at a pH of 5.0 at an adsorbent dosage of 0.5 g soda lignin and an agitation period of 40 min. The adsorption capacities and rates of Cu(II) ions onto soda lignin was evaluated. The Langmuir and Freundlich adsorption models were applied to calculate the isotherm constants. It was found that the adsorption isothermal data could be well interpreted by the Freundlich model. The kinetic experimental data properly correlated with the pseudo‐second‐order kinetic model, which implies that chemical sorption is the rate‐limiting step.  相似文献   

11.
In this study, the biosorption of Cd(II), Ni(II) and Pb(II) on Aspergillus niger in a batch system was investigated, and optimal condition determined by means of central composite design (CCD) under response surface methodology (RSM). Biomass inactivated by heat and pretreated by alkali solution was used in the determination of optimal conditions. The effect of initial solution pH, biomass dose and initial ion concentration on the removal efficiency of metal ions by A. niger was optimized using a design of experiment (DOE) method. Experimental results indicated that the optimal conditions for biosorption were 5.22 g/L, 89.93 mg/L and 6.01 for biomass dose, initial ion concentration and solution pH, respectively. Enhancement of metal biosorption capacity of the dried biomass by pretreatment with sodium hydroxide was observed. Maximal removal efficiencies for Cd(II), Ni(III) and Pb(II) ions of 98, 80 and 99% were achieved, respectively. The biosorption capacity of A. niger biomass obtained for Cd(II), Ni(II) and Pb(II) ions was 2.2, 1.6 and 4.7 mg/g, respectively. According to these observations the fungal biomass of A. niger is a suitable biosorbent for the removal of heavy metals from aqueous solutions. Multiple response optimization was applied to the experimental data to discover the optimal conditions for a set of responses, simultaneously, by using a desirability function.  相似文献   

12.
A one‐pot synthesis and application of cellulose‐based sensors to efficiently detect various toxic metal ions in aqueous solutions in micromolar quantities is reported. Cellulose microfibers have been functionalized with carbon disulfide in alkaline solution to form cellulose xanthate. The material detects several toxic metal ions such as copper, nickel, or cobalt ions through color change detectable by the naked eye. The optical sensor can be used as an ideal flash test for assessing the quality of drinking water.  相似文献   

13.
This study aims to remove of Cu2+, Cd2+, and Pb2+ ions from solution and to investigate the adsorption isotherms, adsorption kinetics, and ion‐exchange affinities of these metals using waste activated sludge (AS) biomass. The adsorptions of the metals on biomass were optimal at an acidic pH value of 6.0 based on its monolayer capacities. Maximum monolayer capacities of AS biomass (qmax) were calculated as 0.478, 0.358, and 0.280 mmol g?1 for Cu2+, Cd2+, and Pb2+, respectively, and the adsorption equilibrium time was found as 60 min for each metal. The adsorbed amount of metal rose with increasing of initial metal ion concentration. The equilibrium adsorption capacity of AS for initial 0.25 mmol L?1 metal concentration was determined as 0.200, 0.167, and 0.155 mmol g?1 for Cu2+, Cd2+, and Pb2+ ions, respectively. These relevant values were determined as 0.420, 0.305, and 0.282 mmol g?1 for Cu2+, Cd2+, and Pb2+ ions, respectively, when initial metal concentration was 0.50 mmol L?1. In the multi‐metal sorption system, the adsorption capacity of AS biomass was observed in the order of Cu2+ > Cd2+ > Pb2+. In the presence of 100 mmol L?1 H+ ion, the order of ion‐exchange affinity with H+ was found as Cu2+ > Cd2+ > Pb2+. The adsorption kinetics were also found to be well described by the pseudo‐second‐order and intraparticle diffusion models. Two different rate constants were obtained as ki1 and ki2 and ki1 (first stage) was found to be higher than ki2 (second stage).  相似文献   

14.
15.
Magnetite nanoparticles were applied to remove Ni(II) from aqueous solutions as a function of pH, contact time, supporting electrolyte concentration, and analytical initial Ni(II) concentration. The highly crystalline nature of the magnetite structure with diameter of around 10 nm was characterized with transmission electron microscopy (TEM) and X‐ray diffractometry (XRD). The surface area was determined to be 115.3 m2/g. Surface chemical properties of magnetite at 25°C in aqueous suspensions were investigated. The point of zero charge (pHzpc) was found to be 7.33 and the intrinsic acidity constants (${\rm p}K_{{\rm a}1}^{{\rm s}} $ and ${\rm p}K_{{\rm a}2}^{{\rm s}} $ ) were found to be 9.3 and 5.9, respectively. The surface functional groups were investigated with Fourier transform‐infrared spectroscopy (FTIR) as well. Batch experiments were carried out to determine the adsorption kinetics and mechanism of Ni(II) by these magnetite nanoparticles. The adsorption process was found to be pH dependent. In NaCl solutions, Ni(II) adsorption increased with increasing ionic strength while in NaClO4 solutions, Ni(II) adsorption exhibited little dependence on the ionic strength of the solution. The adsorption process better followed the pseudo‐second order equation and Freundlich isotherm.  相似文献   

16.
17.
既有地下结构用于地铁工程的可行性研究(II)   总被引:1,自引:0,他引:1  
为了评价7381工程现在用于地铁运营的安全性,基于现场隧道衬砌的检测结果,对主洞衬砌和车站三联拱的承载能力进行了计算。通过多种力学模型讨论衬砌所承受的围岩压力,并依据比较结果,推荐泰沙基模型.计算结果表明衬砌结构承载能力满足现行有关规范要求。对衬砌存在的损伤和劣化进行了机理分析,并提出了有针对性的治理方法。结合地质勘查结果和衬砌结构使用寿命评估结果得出:哈尔滨7381工程经整治后可以用于地铁运营,其剩余使用寿命估算为80年。  相似文献   

18.
Hydromechanics for the formation and development of radial sandbanks (II)   总被引:2,自引:0,他引:2  
In order to study the tidal current ridges, a three-dimensional numerical model is, for the first time, applied to studying the hydrodynamic circumstance with Houbolt’s spiral assumption in the radial sandbank area. It successfully reveals that the radial sandbanks are molded by to-and-fro tidal current as well as the subtransverse circulation current, and that both contribute to maintaining the interior dynamic balance of the sandbanks. It is also found that the subtransverse circulation current would not always appear in pair within the ridges. These discoveries enrich the theoretical results in hydrodynamics of tidal current ridges.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号