首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
The decolorization of some of azo‐metal complex dyes used in textile industry was investigated in this study. The halophilic prokaryotes isolated from a solar sea‐saltern (Çamalt?) in Turkey were screened for resistance to five commercial azo and mixture of azo‐metal complex dyes. Only one bacterium was found to be resistant against two of dyes, namely Lanaset Navy R and Lanaset Brown B. The bacterium was identified as Halobacillus sp. C‐22 according to 16S rRNA gene sequence analyses. Decolorization experiments were carried out at 120 mg/L concentration of both dyes, at room temperature, and with an acidic pH of 4.5. Lanaset Brown B was decolorized at a high adsorbance ratio (96.12%) at the 78th hour. However, Lanaset Navy R was rapidly decolorized in 10 min (46.67%) and showed the highest adsorbance ratio (60.66%) at the third hour. Freundlich and Langmuir equilibrium isotherm models were used to evaluate the adsorption of dyes and Freundlich isoterm was more suitable for biosorpsiyon of both azo dyes. The functional groups on Halobacillus sp. C‐22 for decolorization were characterized by FT‐IR. This is the first study to reveal potential of Halobacillus sp. for decolorization of textile azo‐metal complex dyes.  相似文献   

2.
3.
4.
5.
6.
In this work the potential of live and active Phanerochaete chryosporium, a white rot fungi, to remove lower Cr(VI) concentration from aqueous solutions was reported for the first time. A medium pH had significant effect on the growth of the fungus and bioremoval of Cr(VI). Substrate inhibition on the growth of Phanerochaete chrysosporium was evident beyond 20 g L?1 of dextrose concentration. A maximum biomass concentration of 15.64 g L?1 was obtained for an initial dextrose concentration of 20 g L?1 in metal free medium at pH 6.0. An increase in Cr(VI) concentration beyond 10 mg L?1 inhibited the growth of the fungi, thereby, reducing the chromium bioremoval efficiency. A maximum reduction efficiency of 98.92% was reported for an initial metal concentration of 10 mg L?1. A mathematical expression for the bioreduction of Cr(VI) considering the organic compounds in the cells was proposed.  相似文献   

7.
The removal of three basic dyes by adsorption onto bentonite was investigated for single, binary, and ternary solutions in a batch system. Before and after dye adsorption, bentonite samples were analyzed by using X‐ray fluorescence spectrometer, SEM, and Fourier transform IR spectrometry. The D‐optimal design and response surface methodology were applied in designing the experiments for evaluating the interactive effects of each initial concentrations variable of the dyes in binary systems. Predicted values were found to be in good agreement with experimental values, which defined propriety of the model and the achievement of D‐optimal in optimization of adsorption of binary dye systems. The competitive adsorption results showed that the adsorption amount of a dye was suppressed in the presence and increasing concentrations of second or third dye. For mono‐component isotherm modeling, Langmuir and Freundlich models were applied to equilibrium data of single, binary, and ternary dye solutions, while modified Langmuir, Sheindrof–Rebhun–Sheintuch and modified extended Freundlich models were also applied to equilibrium data of binary dye solutions for multi‐component isotherm modeling. The results showed that the Langmuir was the more suitable model for single dye systems while extended Freundlich model fitted best to the experimental data with the lowest error values for multi‐dye systems.  相似文献   

8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号