首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of temperature, diffusive boundary-layer thickness, and sediment composition on fluxes of inorganic N and P were estimated for sediment cores with oxidized surfaces from nearshore waters (2?C10?m) of a montane oligotrophic lake. Fluxes of N and P were not affected by diffusive boundary-layer thickness but were strongly affected by temperature. Below 16?°C, sediments sequestered small amounts of P and released small amounts of N. Above 16?°C, the seasonal maximum water temperature, sediments were substantial sources of N (NH4 +?CN?=?2?C24?mg?m?2 d?1; NO3 ??+?NO2 ??CN?=?2?C5?mg?m?2 d?1) and P (0.1?C0.4?mg?m?2 d?1), indicating potential responsiveness of sediment?Cwater nutrient exchange, and of corresponding phytoplankton growth, to synoptic warming.  相似文献   

2.
Measurements of visible and diffuse gas emission were conducted in 2006 at the summit of Sierra Negra volcano, Galapagos, with the aim to better characterize degassing after the 2005 eruption. A total SO2 emission of 11?±?2?t day?1 was derived from miniature differential optical absorption spectrometer (mini-DOAS) ground-based measurements of the plume emanating from the Mini Azufral fumarolic area, the most important site of visible degassing at Sierra Negra volcano. Using a portable multigas system, the H2S/SO2, CO2/SO2, and H2O/SO2 molar ratios in the Mina Azufral plume emissions were found to be 0.41, 52.2, and 867.9, respectively. The corresponding H2O, CO2, and H2S emission rates were 562, 394, and 3?t day?1, respectively. The total output of diffuse CO2 emissions from the summit of Sierra Negra volcano was 990?±?85?t day?1, with 605?t day?1 being released by a deep source. The diffuse-to-plume CO2 emission ratio was about 1.5. Mina Azufral fumaroles released gasses containing 73.6?mol% of H2O; the main noncondensable components amounted to 97.4?mol% CO2, 1.5?mol% SO2, 0.6?mol% H2S, and 0.35?mol%?N2. The higher H2S/SO2 ratio values found in 2006 as compared to those reported before the 2005 eruption reveal a significant hydrothermal contribution to the fumarolic emissions. 3He/4He ratios measured at Mina Azufral fumarolic discharges showed values of 17.88?±?0.25?R A , indicating a mid-ocean ridge basalts (MORB) and a Galapagos plume contribution of 53 and 47?%, respectively.  相似文献   

3.
We report the first detailed study of spatial variations on the diffuse emission of carbon dioxide (CO2) and hydrogen sulfide (H2S) from Hengill volcanic system, Iceland. Soil CO2 and H2S efflux measurements were performed at 752 sampling sites and ranged from nondetectable to 17,666 and 722?g?m?2?day?1, respectively. The soil temperature was measured at each sampling site and used to evaluate the heat flow. The chemical composition of soil gases sampled at selected sampling sites during this study shows they result from a mixing process between deep volcanic/hydrothermal component and air. Most of the diffuse CO2 degassing is observed close to areas where active thermal manifestations occur, northeast flank of the Hengill central volcano close to the Nesjavellir power plant, suggesting a diffuse degassing structure with a SSW?CNNE trend, overlapping main fissure zone and indicating a structural control of the degassing process. On the other hand, H2S efflux values are in general very low or negligible along the study area, except those observed at the northeast flank of the Hengill central volcano, where anomalously high CO2 efflux and soil temperatures were also measured. The total diffuse CO2 emission estimated for this volcanic system was about 1,526?±?160?t?day?1 of which 453?t?day?1 (29.7?%) are of volcanic/hydrothermal origin. To calculate the steam discharge associated with the volcanic/hydrothermal CO2 output, we used the average H2O/CO2 mass ratio from 12 fumarole samples equal to 88.6 (range, 9.4?C240.2) as a representative value of the H2O/CO2 mass ratios for Hengill fumarole steam. The resulting estimate of the steam flow associated with the gas flux is equal to 40,154?t?day?1. The condensation of this steam results in thermal energy release for Helgill volcanic system of 1.07?×?1014?J?day?1 or to a total heat flow of 1,237?MWt.  相似文献   

4.
This paper focuses on the chemical and isotopic features of dissolved gases (CH4 and CO2) from four meromictic lakes hosted in volcanic systems of Central–Southern Italy: Lake Albano (Alban Hills), Lake Averno (Phlegrean Fields), and Monticchio Grande and Piccolo lakes (Mt. Vulture). Deep waters in these lakes are characterized by the presence of a significant reservoir of extra-atmospheric dissolved gases mainly consisting of CH4 and CO2. The δ13C-CH4 and δD-CH4 values of dissolved gas samples from the maximum depths of the investigated lakes (from ?66.8 to ?55.6?‰ V-PDB and from ?279 to ?195?‰ V-SMOW, respectively) suggest that CH4 is mainly produced by microbial activity. The δ13C-CO2 values of Lake Grande, Lake Piccolo, and Lake Albano (ranging from ?5.8 to ?0.4?‰ V-PDB) indicate a significant CO2 contribution from sublacustrine vents originating from (1) mantle degassing and (2) thermometamorphic reactions involving limestone, i.e., the same CO2 source feeding the regional thermal and cold CO2-rich fluid emissions. In contrast, the relatively low δ13C-CO2 values (from ?13.4 to ?8.2?‰ V-PDB) of Lake Averno indicate a prevalent organic CO2. Chemical and isotopic compositions of dissolved CO2 and CH4 at different depths are mainly depending on (1) CO2 inputs from external sources (hydrothermal and/or anthropogenic); (2) CO2–CH4 isotopic exchange; and (3) methanogenic and methanotrophic activity. In the epilimnion, vertical water mixing, free oxygen availability, and photosynthesis cause the dramatic decrease of both CO2 and CH4 concentrations. In the hypolimnion, where the δ13C-CO2 values progressively increase with depth and the δ13C-CH4 values show an opposite trend, biogenic CO2 production from CH4 using different electron donor species, such as sulfate, tend to counteract the methanogenesis process whose efficiency achieves its climax at the water–bottom sediment interface. Theoretical values, calculated on the basis of δ13C-CO2 values, and measured δ13CTDIC values are not consistent, indicating that CO2 and the main carbon-bearing ion species (HCO3 ?) are not in isotopic equilibrium, likely due to the fast kinetics of biochemical processes involving both CO2 and CH4. This study demonstrates that the vertical patterns of the CO2/CH4 ratio and of δ13C-CO2 and δ13C-CH4 are to be regarded as promising tools to detect perturbations, related to different causes, such as changes in the CO2 input from sublacustrine springs, that may affect aerobic and anaerobic layers of meromictic volcanic lakes.  相似文献   

5.
We investigated greenhouse gas emissions (CO2, CH4, and N2O) from reservoirs located across an altitude gradient in Switzerland. These are the first results of greenhouse gas emissions from reservoirs at high elevations in the Alps. Depth profiles were taken in 11 reservoirs located at different altitudes between the years 2003 and 2006. Diffusive trace gas emissions were calculated using surface gas concentrations, wind speeds and transfer velocities. Additionally, methane entering with the inflowing water and methane loss at the turbine was assessed for a subset of the reservoirs. All reservoirs were emitters of carbon dioxide and methane with an average of 970?±?340?mg?m?2?day?1 (results only from four lowland and one subalpine reservoir) and 0.20?±?0.15?mg?m?2?day?1, respectively. One reservoir (Lake Wohlen) emitted methane at a much higher rate (1.8?±?0.9?mg?m?2?day?1) than the other investigated reservoirs. There was no significant difference in methane emissions across the altitude gradient, but average dissolved methane concentrations decreased with increasing elevation. Only lowland reservoirs were sources for N2O (72?±?22???g?m?2?day?1), while the subalpine and alpine reservoirs were in equilibrium with atmospheric concentrations. These results indicate reservoirs from subalpine/alpine regions to be only minor contributors of greenhouse gases to the atmosphere compared to other reservoirs.  相似文献   

6.
CO2 flux was measured continuously in a wheat and maize rotation system of North China Plain using the eddy covariance technique to study the characteristic of CO2 exchange and its response to key environmental factors. The results show that nighttime net ecosystem exchange (NEE) varied exponentially with soil temperature. The temperature sensitivities of the ecosystem (Q 10) were 2.94 and 2.49 in years 2002–2003 and 2003–2004, respectively. The response of gross primary productivity (GPP) to photosynthetically active radiation (PAR) in the crop field can be ex-pressed by a rectangular hyperbolic function. Average A max and α for maize were more than those for wheat. The values of α increased positively with leaf area index (LAI) of wheat. Diurnal variations of NEE were significant from March to May and from July to September, but not remarkable in other months. NEE, GPP and ecosystem respiration (R ec) showed significantly seasonal variations in the crop field. The highest mean daily CO2 uptake rate was ?10.20 and ?12.50 gC·m?2?d?1 in 2003 and 2004, for the maize field, respectively, and ?8.19 and ?9.50 gC?m?2·d?1 in 2003 and 2004 for the wheat field, respectively. The maximal CO2 uptake appeared in April or May for wheat and mid-August for maize. During the main growing seasons of winter wheat and summer maize, NEE was controlled by GPP which was chiefly influenced by PAR and LAI. R ec reached its annual maximum in July when R ec and GPP contributed to NEE equally. NEE was dominated by R ec in other months and temperature became a key factor controlling NEE. Total NEE for the wheat field was ?77.6 and ?152.2 gC·m?2·a?1 in years 2002–2003 and 2003–2004, respectively, and ?120.1 and ?165.6 gC·m?2·a?1 in 2003 and 2004 for the maize field, respectively. The cropland of North China Plain was a carbon sink, with annual ?197.6 and ?317.9 gC·m?2·a?1 in years 2002–2003 and 2003–2004, respectively. After considering the carbon in grains, the cropland became a carbon source, which was 340.5 and 107.5 gC·m?2·a?1 in years 2002–2003 and 2003–2004, respectively. Affected by climate and filed managements, inter-annual carbon exchange varied largely in the wheat and maize rotation system of North China Plain.  相似文献   

7.
Changes in the chemical composition of the hot springs of Mendeleev Volcano (Kunashir Island) as for Cl?, SO 4 2? , CO2, NH 4 + and Cl?/SO 4 2? are given in function of the 1965–66 and 1973 (in part) seismic activity in the South Kurile islands.  相似文献   

8.
Concerns related to climate change have resulted in an increasing interest in the importance of hydrological events such as droughts in affecting biogeochemical responses of watersheds. The effects of an unusually dry summer in 2002 had a marked impact on the biogeochemistry of three watersheds in the north‐eastern USA. Chemical, isotopic and hydrological responses with particular emphasis on S dynamics were evaluated for Archer Creek (New York), Sleepers River (Vermont) and Cone Pond (New Hampshire) watersheds. From 1 August to 14 September 2002, all three watersheds had very low precipitation (48 to 69 mm) resulting in either very low or no discharge (mean 0·015, 0·15 and 0·000 mm day?1 for Archer Creek, Sleepers River and Cone Pond, respectively). From 15 September to 31 October 2002, there was a substantial increase in precipitation totals (212, 246 and 198 mm, respectively) with increased discharge. Archer Creek was characterized by a large range of SO42? concentrations (152 to 389 µeq L?1, mean = 273 µeq L?1) and also exhibited the greatest range in δ34S values of SO42? (?1·4 to 8·8 ‰ ). Sleepers River's SO42? concentrations ranged from 136 to 243 µeq L?1 (mean = 167 µeq L?1) and δ34S values of SO42? ranged from 4·0 to 9·0 ‰ . Cone Pond's SO42? concentrations (126–187 µeq L?1, mean = 154 µeq L?1) and δ34S values (2·4 to 4·3 ‰ ) had the smallest ranges of the three watersheds. The range and mean of δ18O‐SO42? values for Archer Creek and Cone Pond were similar (3·0 to 8·9 ‰ , mean = 4·5 ‰ ; 3·9 to 6·3 ‰ , mean = 4·9 ‰ ; respectively) while δ18O‐SO42? values for Sleepers River covered a larger range with a lower mean (1·2 to 10·0 ‰ , mean = 2·5). The difference in Sleepers River chemical and isotopic responses was attributed to weathering reactions contributing SO42?. For Archer Creek wetland areas containing previously reduced S compounds that were reoxidized to SO42? probably provided a substantial source of S. Cone Pond had limited internal S sources and less chemical or isotopic response to storms. Differences among the three watersheds in S biogeochemical responses during these storm events were attributed to differences in S mineral weathering contributions, hydrological pathways and landscape features. Further evaluations of differences and similarities in biogeochemical and hydrological responses among watersheds are needed to predict the impacts of climate change. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Dew samples were collected between October 2007 and February 2008 from a suburban site in Agra. pH, conductivity, major inorganic ions (F?, Cl?, NO 3 ? , SO 4 2? , Na+, K+, Ca2+, Mg2+, and NH 4 + ), and some trace metals (Cr, Sn, Zn, Pb, Cd, Ni, Mn, Fe, Si, Al, V, and Cu) were determined to study the chemistry of dew water. The mean pH was 7.3, and the samples exhibited high ionic concentrations. Dew chemistry suggested both natural and anthropogenic influences, with acidity being neutralized by atmospheric ammonia and soil constituents. Ion deposition flux varied from 0.25 to 3.0?neq?m?2?s?1, with maximum values for Ca2+ followed by NH 4 + , Mg2+, SO 4 2? , Cl?, NO 3 ? , Na+, K+, and F?. Concentrations of trace metals varied from 0.13 to 48?μg?l?1 with maximum concentrations of Si and minimum concentration of Cd. Correlation analysis suggested their contributions from both crustal and anthropogenic sources.  相似文献   

10.
Mass balance studies in forested catchments in the northeastern USA show that S losses via streamwater SO42? exceed measured atmospheric S inputs. Possible sources of the excess S loss include underestimated dry deposition, mineralization of organic S in soils, desorption of soil sulphate, oxidation of recently formed sulphides and mineral weathering. Evaluating the relative contribution of these sources and processes to SO42? export is important to our understanding of S cycling as well as to policy makers in their evaluation of the efficacy of S emission controls. In order to evaluate the potential for mineral weathering contributions to SO42? export, we measured concentration and isotopic composition (δ34S and δ18O) of SO42? in stream water, and concentration and δ34S values of four S fractions in bedrock and soil parent material in catchments of varying geological composition. Geological substrates with low S concentrations were represented by catchments underlain by quartzite and granite, whereas geological substrates with high S concentrations were represented by catchments underlain by sulphidic slate, schist and metavolcanic rocks. Catchments with S‐poor bedrock had stream‐water SO42? concentrations <100 µeq L?1 and isotopic values consistent with those of atmospheric SO42? that had been cycled through the organic soil pool. Catchments with S‐rich bedrock had stream‐water SO42? concentrations ranging from 56 to 229 µeq L?1. Isotopic values deviated from those of SO42? in atmospheric deposition, clearly indicating a mineral weathering source in some cases, whereas in others spatial variability of mineral δ34S values precluded the isotopic detection of a weathering contribution. These results, along with evidence suggesting formation of secondary sulphate minerals in bedrock weathering rinds, indicate that mineral weathering may be an important source of S in the surface waters of some forested catchments in the northeastern USA. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
13C/12C- and 18O/16O-signatures of Calcite Precipitations in Drainage Systems Measurements of drainage waters show two distinct processes of calcite precipitation: 1. reprecipitation of calcium carbonate previously dissolved in groundwaters and 2. absorption of atmospheric CO2 by alkaline solutions. Both processes may be distinguished by the stable isotopes of oxygen and carbon. Calcite precipitated from carbonate groundwater yields δ13C ≈ ?13%0 (PDB) and δ18O ≈ 24%0 (SMOW), whereas calcite produced by CO2-absorption shows δ13C ≈ ?25%0 (PDB) and δ18O ≈ 10%0 (SMOW).  相似文献   

12.
In light of recent reductions in sulphur (S) and nitrogen (N) emissions mandated by Title IV of the Clean Air Act Amendments of 1990, temporal trends and trend coherence in precipitation (1984–2001 and 1992–2001) and surface water chemistry (1992–2001) were determined in two of the most acid‐sensitive regions of North America, i.e. the Catskill and Adirondack Mountains of New York. Precipitation chemistry data from six sites located near these regions showed decreasing sulphate (SO42?), nitrate (NO3?), and base cation (CB) concentrations and increasing pH during 1984–2001, but few significant trends during 1992–2001. Data from five Catskill streams and 12 Adirondack lakes showed decreasing trends in SO42? concentrations at all sites, and decreasing trends in NO3?, CB, and H+ concentrations and increasing trends in dissolved organic carbon at most sites. In contrast, acid‐neutralizing capacity (ANC) increased significantly at only about half the Adirondack lakes and in one of the Catskill streams. Flow correction prior to trend analysis did not change any trend directions and had little effect on SO42? trends, but it caused several significant non‐flow‐corrected trends in NO3? and ANC to become non‐significant, suggesting that trend results for flow‐sensitive constituents are affected by flow‐related climate variation. SO42? concentrations showed high temporal coherence in precipitation, surface waters, and in precipitation–surface water comparisons, reflecting a strong link between S emissions, precipitation SO42? concentrations, and the processes that affect S cycling within these regions. NO3? and H+ concentrations and ANC generally showed weak coherence, especially in surface waters and in precipitation–surface water comparisons, indicating that variation in local‐scale processes driven by factors such as climate are affecting trends in acid–base chemistry in these two regions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Groundwater is a very significant water source used for irrigation and drinking purposes in the karst region, and therefore understanding the hydrogeochemistry of karst water is extremely important. Surface water and groundwater were collected, and major chemical compositions and environmental isotopes in the water were measured in order to reveal the geochemical processes affecting water quality in the Gaoping karst basin, southwest China. Dominated by Ca2+, Mg2+, HCO3? and SO42?, the groundwater is typically characterized by Ca? Mg? HCO3 type in a shallow aquifer, and Ca? Mg? SO4 type in a deeper aquifer. Dissolution of dolomite aquifer with gypsiferous rocks and dedolomitization in karst aquifers are important processes for chemical compositions of water in the study basin, and produce water with increased Mg2+, Ca2+ and SO42? concentrations, and also increased TDS in surface water and groundwater. Mg2+/Ca2+ molar ratios in groundwater decrease slightly due to dedolomitization, while the mixing of discharge of groundwater with high Mg2+/Ca2+ ratios may be responsible for Mg2+/Ca2+ ratios obviously increasing in surface water, and Mg2+/Ca2+ ratios in both surface water and groundwater finally tending to a constant. In combination with environmental isotopic analyses, the major mechanism responsible for the water chemistry and its geochemical evolution in the study basin can be revealed as being mainly from the water–rock interaction in karst aquifers, the agricultural irrigation and its infiltration, the mixing of surface water and groundwater and the water movement along faults and joints in the karst basin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Zusammenfassung Bei der Berechnung der L?slichkeiten des zwei-und des dreiwertigen Eisens müssen neben den Fe+2 und Fe+3 Ionen auch die Eisen(II)- und Eisen(III)-Hydroxokomplexe ([Fe(OH)]+, [Fe(OH)]2+, [Fe(OH)2]+, [Fe(OH)3] (d), und [Fe(OH)4]) berücksichtigt werden. Die L?slichkeit des zweiwertigen Eisens in natürlichen (Bikarbonat enthaltenden) W?ssern ist in der Regel durch die L?slichkeitsgleichgewichte des Eisenkarbonats beschr?nkt, w?hrend die L?slichkeit des dreiwertigen Eisens durch die L?slichkeitsgleichgewichte des Eisen(III)-Hydroxyds bestimmt wird (Abbildungen 2 und 4). Die L?slichkeitsverh?ltnisse k?nnen durch Komplexbildung, vor allem mit organischen Basen, ver?ndert werden. Dreiwertiges Eisen hat eine viel st?rkere Tendenz, Hydroxokomplexe zu bilden, as zweiwertiges Eisen. Dementsprechend ist das hydratisierte Eisen-(III)-Ion eine so?rkere S?ure (im SinneBr?nsteds) als das Eisen-(II)-Ion. Die Oxydation von Eisen-(II) zu Eisen-(III) ist deshalb von einer Erniedrigung des pH-Wertes begleitet. Die Hydroxoeisen-(III)-Komplexe haben eine starke Tendenz, Polymerisationsreaktionen einzugehen, wobei im schwach sauren oder neutralen Bereich positiv geladene im alkalischen Bereich hingegen negative geladene Kolloidpartikel entstehen k?nnen. Die allf?llige Koagulation dieser Kolloide zu Eisenoxydhydrat ist vom Elektrolytgehalt abh?ngig und kann durch hydrophile organische Schutzkolloide verhindert werden. Zweiwertiges Eisen ist in Gegenwart von gel?stem Sauerstoff unbest?ndig und wird zu dreiwertigem Eisen oxydiert. Die Oxydationsgeschwindigkeit nimmt mit zunehmendem pH stark zu. Kupfer-, Platinsalze und Aktivkohle als Katalysatoren sowie Komplexbildner, welche mit dreiwertigem Eisen Komplexe bilden,beschleunigen die Autoxidation. Elektrodenpotential-pH-Diagramme (Abbildung 5) erm?glichen einen zusammenfassenden überblick über den Einfluss von Potential und pH auf die L?slichkeitsverh?ltnisse. Im Eisenkreislauf der Seen (Abbildung 7) kommt das Wechselspiel von Oxydation und Reduktion sowie von F?llung und L?sung eindrücklich zur Geltung.   相似文献   

15.
Thermal diffusivity (D) was measured using laser-flash analysis on pristine and remelted obsidian samples from Mono Craters, California. These high-silica rhyolites contain between 0.013 and 1.10?wt% H2O and 0 to 2?vol% crystallites. At room temperature, D glass varies from 0.63 to 0.68?mm2?s?1, with more crystalline samples having higher D. As T increases, D glass decreases, approaching a constant value of ??0.55?mm2?s?1 near 700?K. The glass data are fit with a simple model as an exponential function of temperature and a linear function of crystallinity. Dissolved water contents up to 1.1?wt% have no statistically significant effect on the thermal diffusivity of the glass. Upon crossing the glass transition, D decreases rapidly near ??1,000?K for the hydrous melts and ??1,200?K for anhydrous melts. Rhyolitic melts have a D melt of ??0.51?mm2?s?1. Thermal conductivity (k?=?D·??·C P) of rhyolitic glass and melt increases slightly with T because heat capacity (C P) increases with T more strongly than density (??) and D decrease. The thermal conductivity of rhyolitic melts is ??1.5?W?m?1?K?1, and should vary little over the likely range of magmatic temperatures and water contents. These values of D and k are similar to those of major crustal rock types and granitic protoliths at magmatic temperatures, suggesting that changes in thermal properties accompanying partial melting of the crust should be relatively minor. Numerical models of shallow rhyolite intrusions indicate that the key difference in thermal history between bodies that quench to obsidian, and those that crystallize, results from the release of latent heat of crystallization. Latent heat release enables bodies that crystallize to remain at high temperatures for much longer times and cool more slowly than glassy bodies. The time to solidification is similar in both cases, however, because solidification requires cooling through the glass transition in the first case, and cooling only to the solidus in the second.  相似文献   

16.
The continuous measurement of molecular hydrogen (H2) emissions from passively degassing volcanoes has recently been made possible using a new generation of low-cost electrochemical sensors. We have used such sensors to measure H2, along with SO2, H2O and CO2, in the gas and aerosol plume emitted from the phonolite lava lake at Erebus volcano, Antarctica. The measurements were made at the crater rim between December 2010 and January 2011. Combined with measurements of the long-term SO2 emission rate for Erebus, they indicate a characteristic H2 flux of 0.03?kg s–1 (2.8?Mg? day–1). The observed H2 content in the plume is consistent with previous estimates of redox conditions in the lava lake inferred from mineral compositions and the observed CO2/CO ratio in the gas plume (~0.9 log units below the quartz–fayalite–magnetite buffer). These measurements suggest that H2 does not combust at the surface of the lake, and that H2 is kinetically inert in the gas/aerosol plume, retaining the signature of the high-temperature chemical equilibrium reached in the lava lake. We also observe a cyclical variation in the H2/SO2 ratio with a period of ~10?min. These cycles correspond to oscillatory patterns of surface motion of the lava lake that have been interpreted as signs of a pulsatory magma supply at the top of the magmatic conduit.  相似文献   

17.
We apply a measurement technique that utilizes thermal video of vapor-dominated volcanic plumes to estimate the H2O gas flux at three degassing volcanoes. Results are compared with H2O flux measurements obtained using other methods to verify the thermal camera-derived values. Our estimation of the H2O emission rate is based on the mass and energy conservation equations. H2O flux is quantified by extracting the temperature and width of the gas plume from the thermal images, calculating the transit velocity of the gas plume from the thermal video, and combining these results with atmospheric parameters measured on-site. These data are then input into the equations for conservation of mass and energy. Selected volcanoes for this study were Villarrica in Chile, Stromboli in Italy, and Santa Ana in El Salvador. H2O fluxes estimated from the thermal imagery were 38–250?kg?s?1 at Villarrica, 4.5–14?kg?s?1 for Stromboli’s Central Crater, and 168–219?kg?s?1 at Santa Ana. These compare with H2O flux values estimated by other methods of 73–220, 3–70 and 266?kg?s?1, at the three volcanoes, respectively. The good agreement between thermal image-derived results and those estimated by other methods seem to validate this method.  相似文献   

18.
Data on the distribution of fCO2 were obtained during a cruise in the Aegean Sea during February 2006. The fCO2 of surface water (fCO2sw) was lower than the atmospheric fCO2 (fCO2atm) throughout the area surveyed and ΔfCO2 values varied from ?34 to ?61 μatm. The observed under-saturation suggests that surface waters in the Aegean represent a sink for atmospheric CO2 during the winter of 2006. Higher fCO2sw values were recorded in the ‘less warm’ and ‘less saline’ shallow northernmost part of the Aegean Sea implying that the lower seawater temperature and salinity in this area play a crucial role in the spatial distribution of fCO2sw.A first estimate of the magnitude of the air–sea CO2 exchange and the potential role of the Aegean Sea in the transfer of atmospheric CO2 was also obtained. The air–sea CO2 fluxes calculated using different gas transfer formulations showed that during February 2006, the Aegean Sea absorbs atmospheric CO2 at a rate ranging from ?6.2 to ?11.8 mmol m?2 d?1 with the shipboard recorded wind speeds and at almost half rate (?3.5 to ?5.5 mmol m?2 d?1) with the monthly mean model-derived wind speed. Compared to recent observations from other temperate continental shelves during winter period, the Aegean Sea acts as a moderate to rather strong sink for atmospheric CO2.Further investigations, including intensive spatial and temporal high-resolution observations, are necessary to elucidate the role of the Aegean Sea in the process of transfer of atmospheric CO2 into the deep horizons of the Eastern Mediterranean.  相似文献   

19.
Single-crystal spectra of pyropes, synthesized on the 3:1:3 composition of the system MgO-Al2O3-SiO2 atpH2O = ptotal = 25kbar and 1000°C, show a broad band centered at around 3400 cm?1 due toνH2O of (H2O)n aggregates in fluid inclusions and a sharp intense band near 3600 cm?1 due toνOH of (HO)44? clusters introduced by the hydrogarnet substitutionSi4+ = 4H+. The water contents in the synthetic pyrope, due to (HO)44? clusters are estimated near 0.05 wt.% H2O from spectroscopic data. Si deficits in microprobe analyses of the pyropes studied support the hydrogarnet substitution. These results show that the hydrogarnet substitution in pyrope may contribute to water contents in the mantle.  相似文献   

20.
Abstract

This paper analyzes the linear stability of a rapidly-rotating, stratified sheet pinch in a gravitational field, g, perpendicular to the sheet. The sheet pinch is a layer (O ? z ? d) of inviscid, Boussinesq fluid of electrical conductivity σ, magnetic permeability μ, and almost uniform density ρ o; z is height. The prevailing magnetic field. B o(z), is horizontal at each z level, but varies in direction with z. The angular velocity, Ω, is vertical and large (Ω ? VA/d, where VA = B0√(μρ0) is the Alfvén velocity). The Elsasser number, Λ = σB2 0/2Ωρ0, measures σ. A (modified) Rayleigh number, R = gβd20V2 A, measures the buoyancy force, where β is the imposed density gradient, antiparallel to g. A Prandtl number, PK = μσK, measures the diffusivity, k, of density differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号