共查询到18条相似文献,搜索用时 78 毫秒
1.
2014年新疆于田发生MS7.3地震,这一地区6年来连续发生2次强烈地震,震中相距不到110km.由于初始定位误差较大,于田地震的发震断层仍不清楚.本研究的主要目标是利用地震精定位方法对于田地震序列及其背景地震活动进行重新定位,确定于田地震的发震断层.本研究使用双差定位方法对于田地震序列进行重新定位.这一方法假设两个地震的震源距小于事件到台站的距离,两个事件到同一台站的走时差主要归因于其空间位置的偏移,因此可消除由于速度模型不准确引起的定位误差.重定位后得到了435个地震的位置参数.结果表明,2014年于田MS7.3级地震发生在阿尔金断裂带的西端,余震分布的优势方向为北东向,展布长度约33km,震源深度主要集中在4~12km,多数余震位于主震的西南侧.NS,EW和UD方向的定位误差分别为0.5km,1.1km和1.7km.于田地震余震序列总体衰减较慢.根据余震分布特征和震源机制解,认为此次地震的断层面为北东向的节面,阿尔金断裂的西南延伸分支断层是这次地震的主要发震构造.于田地震的发生与巴颜喀拉块体的东南向运动有关. 相似文献
2.
使用区域一维速度模型,利用单纯形法,结合和田台阵的方位角测定了2014年2月12日新疆于田MS7.3地震的主震位置.使用双差定位方法对于田主震和465次余震序列进行了重新定位.结果表明:NS、EW和UD 3个方向的平均相对误差分别为0.13 km、0.14 km、0.15 km,平均走时残差为0.012 s.余震整体分布呈北东向展布,并向主震的西南和北东两个方向延伸,主震的西南方向长近40 km、宽约30 km,北东方向长近20 km、宽约20 km,震源深度集中在5~15 km.余震序列的空间形态沿破裂显示了分段和非均匀特征:主震的西南方向地震数量较多,展布较宽,且近南北向分布,震源深度优势分布在5 ~15 km之间;北东方向地震较少,震源深度优势分布在5 ~10 km之间;靠近山脉的地震震源要比远处的深.余震序列的时间特征为在震后的3天内,震源深度集中在5~15 km,此后的震源深度集中在5~10 km,震源深度总体呈现变浅的趋势. 相似文献
4.
2014年2月12日新疆于田发生MS7.3地震,该震前1天曾发生MS5.4前震,震后余震活动频繁.截止到2月20日12时,该地震序列记录到4000多次余震,最大余震为2月12日MS5.7地震,序列类型为前震—主震—余震型.该地震前震的b值明显低于该区域正常活动的b值和余震的b值.这次地震位于西昆仑断裂带与阿尔金断裂带的交汇区域的阿什库勒断裂北段,震源机制解为走滑型.余震区NE向长70 km、宽20 km,分为主余震分布区和次余震分布区,其中ML4.0以上强余震基本位于NE向主余震分布区,N--S向的次余震分布区则以ML3.0左右地震分布为主,显示该部分可能受到主震的触发作用.于田地区曾发生的2008年3月21日MS7.3地震的震源机制解为正断型,距这次地震约100 km;2012年8月12日发生的MS6.2地震的震源机制解为正断型,距这次地震约10 km.该地区的发震构造背景是:在NE向阿尔金断裂带尾端向SW方向延伸过程中,左旋走滑作用逐渐转换为拉张作用,形成多条左旋走滑兼具拉张作用的断裂. 2014年于田MS7.3地震的发震模式表现为:左旋走滑的阿什库勒断裂北段与南段因速率差异而产生的小型构造盆地,在区域拉张作用力下顺时针旋转;2008年MS7.3张性地震后区域的伸展作用增强,导致盆地南侧的苦牙克断裂发生2012年MS6.2张性地震,该地震引起2014年MS5.4前震,两者激发其后在盆地北侧阿什库勒断裂发生了2014年MS7.3主震. 相似文献
5.
6.
本文采用云南测震台网的观测报告数据,利用双差定位方法对2014年鲁甸MS6.5地震及其强余震序列进行了重定位,获得了3 658个地震事件的震源参数。重定位后地震序列的震中分布显示,余震分布存在两个优势方向,分别为近EW向和SES向,呈共轭型分布,近EW向条带展布长度为30 km,SES 向条带展布长度为20 km;震源深度的分布显示,地震序列总体表现为主震附近震源较深,沿近EW向和SES向逐渐变浅,地震序列的震源深度主要分布在4—20 km范围内。截至2017年2月28日,鲁甸MS6.5地震震源区共发生(同一天发生的一组地震算一次)MS≥4.5强余震4次。重定位后的鲁甸4次强余震序列震中分布存在差异:2014年9月10日和10月27日两次强余震序列的展布特征与主震相同,而2016年和2017年另外两次强余震的后续余震仅分布在强余震的周边,与主震序列明显不同。综合重定位后余震序列分布、震源区地质调查资料以及前人研究认为,鲁甸地震的4次强余震序列是区域应力场和主震引发的震源区应力场共同作用的结果,2014年9月10日和10月27日的两次强余震序列主要受主震引发的震源区应力场的影响;而2016年和2017年两次强余震序列则主要受区域应力场的影响。 相似文献
7.
基于新疆区域数字地震台网震相观测报告,采用双差定位方法对2011—2014年阿尔金断裂带西南端NE向张性剪切段附近的3次于田MS≥5.0地震序列进行了重定位,并对其余震分布及发震构造等进行了分析. 结果表明: 2011年于田MS5.5地震的发震构造为阿尔金断裂,该地震同时触发了阿尔金山前普鲁断裂的中小震活动,地震序列呈近NS向长条带状分布; 2012年于田MS6.2地震序列沿NNE向分布,发震构造为苦牙克断裂; 2014年于田MS7.3地震序列沿NE和NNE方向展布,其中NE走向的余震序列沿阿尔金断裂走向有3处余震丛集分布,由此推测该余震低活动区是由于断层内存在一较大凹凸体,终止了破裂的传播所致,发震构造为阿什库勒断裂和苦牙克断裂. 此外,地震序列截面特征显示,2011—2014年3次于田MS≥5.0地震序列基本贯通了阿尔金断裂带西南端的次级断裂和普鲁断裂. 相似文献
8.
9.
青藏高原中北部的巴颜喀喇地块是近年来强震最为活跃的地区,自1997年以来在地块周围发生了一系列7级以上地震.2014年于田MS7.3级地震就发生在该地块西边界附近的硝尔库勒盆地南缘,该区是阿尔金断裂、康西瓦断裂和东昆仑断裂等多组不同走向大型走滑活动断裂带的交汇部位,不同断裂走向的突然转变及滑动速率差异使该地区形成局部的拉张应力状态,发育了多条NE和近SN向的左旋正断裂. 通过余震分布、震源机制解结果等资料分析,认为此次地震的发震构造为阿尔金断裂西南端的一条次级断裂——硝尔库勒断裂,地震破裂特征为左旋走滑兼正断性质. 在巴颜喀喇地块这一轮的强震活动中,其北边界和东边界都显示块体向东挤出约7 m的位移量,但块体西边界产生的伸展量明显与整个块体向东的位移量不协调,2014年于田MS7.3级地震是巴颜喀喇地块向东挤出的构造响应和应变调整.模拟结果显示阿尔金主断裂上的库仑应力有所增加,东昆仑—柴达木地块可能为下一个强震活跃区,特别是阿尔金断裂的中西段,是今后应该重点关注和监视的地区. 相似文献
10.
2014年2月12日新疆于田7.3级地震震动图 总被引:1,自引:0,他引:1
运用考虑场地效应的震动图快速生成方法,综合考虑震中地区地质构造背景、震源机制解结果、中国西部地区地震动参数衰减特征及测震台站记录信息,估计了2014年2月12日新疆于田7.3级地震震动图。结果显示,于田地震最高震动烈度可能达到Ⅸ度,基本上没有乡镇直接位于震动烈度Ⅷ度和Ⅸ度区内。震动烈度Ⅶ度区的面积约15 000km2,阿羌乡和叶亦克乡的震动烈度可能达到Ⅶ度。Ⅵ度区的面积约为43 000km2,民丰县、于田县、博斯坦乡、奴尔乡、阿热勒乡、英巴格乡、尼雅乡、萨勒吾则克乡等可能遭受震动烈度Ⅵ度的破坏。其次于田县和策勒县之间的乡镇地处Ⅵ度区的分界线附近,由于该地区土层的剪切波速相对较低,地震动容易产生放大,可能加重该地区的震害。最后,与震中距相对较小的和田台相比较,位于破裂走向上的且末测震台出现了限幅的现象,可能是因为地震的方向性效应进一步增大了该地区的震动程度。 相似文献
11.
2014年2月12日在新疆于田县发生了MS7.3地震,主震前一天在震区发生了MS5.4前震,震后余震活动频繁,由于震区台站十分稀疏和不均匀、地壳速度结构复杂,台网常规定位结果精度有限,很难从中获得序列的空间分布特征和活动趋势的正确认识.本文首先利用位于震区附近的于田地震台5年记录的远震波形数据,采用接收函数方法研究了震区附近的地壳结构,建立了震源区的地壳速度模型.在此基础上,联合震相到时和方位角对2014年于田MS7.3地震序列(从2014年02月11日-2014年04月30日,共计577次地震)进行了重新绝对定位.结果显示,(1) 重定位后的前震和主震震中位置明显向地表破裂带及其附近的阿尔金分支断裂(南肖尔库勒断裂和阿什库勒-肖尔库勒断裂)靠近,两者相距5.4 km,主震位置为36.076°N、82.576°E,震源深度为22 km, 前震位置为36.055°N、82.522°E,震源深度为19 km;(2) 本文重定位结果显示,余震序列沿NEE-SWW展布,优势分布长度约73 km、宽度约16 km,平均震源深度为14.8 km,其中77%的余震分布在地表破裂带的西南端,这部分余震中少数沿阿什库勒-肖尔库勒断裂分布,绝大多数沿北东东向的南肖尔库勒断裂分布,位于地表破裂带东北端的余震沿阿什库勒-肖尔库勒断裂分布,但发生在地表破裂带的余震极少;重定位后,位于地表破裂带西南侧的震中分布由台网目录的近南北向变为北东向,与地表破裂带、南肖尔库勒断裂和阿什库勒-肖尔库勒断裂走向一致;(3) 沿重定位剖面的地震分布,可推断位于地表破裂带西南段的南肖尔库勒断裂与位于北东段的阿什库勒-肖尔库勒断裂倾向反向,南肖尔库勒断裂的倾向为SE,阿什库勒-肖尔库勒断裂的倾向为NW,这与本次地震野外考察得到的断裂性质一致.综合重定位结果、地表破裂带分布、震源机制解、南肖尔库勒断裂和阿什库勒-肖尔库勒断裂的性质认为,2014年于田MS7.3地震的发震构造为阿尔金断裂西南尾段的两条分支断裂——南肖尔库勒断裂和阿什库勒-肖尔库勒断裂. 相似文献
12.
2014年于田7.3级地震的发震构造及动力学背景的初步分析 总被引:3,自引:0,他引:3
2004年2月12日新疆维吾尔自治区于田县发生了Ms7.3级地震,其发震断裂为阿尔金断裂带西南段的贡嘎错断裂带.由于地处高山无人区,存在区域历史地震漏记,但1970年以来5级以上地震活动是完整的,近20年来强震活动增强.综合分析认为,2008年于田Ms7.3地震可能加速了本次地震的发生.根据经验统计关系估计,2014年于田地震的同震地表破裂为30-40km,最大水平位错量为1.0-1.5m,地震的复发周期为300-400年.通过阿尔金断裂上前人资料和区域构造的综合分析,认为2014年于田地震是在青藏高原向北东运动背景下左旋走滑的阿尔金断裂向南西端扩展的结果. 相似文献
13.
14.
本文采用离散波数法,计算了2014年于田MS7.3地震的断层破裂在近场和远场产生的库仑破裂应力变化,并结合地震活动特征,讨论了MS7.3地震对后续余震活动和远场区域小震活动的动态应力触发作用.结果表明, ① MS7.3地震产生的库仑破裂应力变化对其西南侧主体余震区的地震活动起到了抑制作用,这可能是本次MS7.3地震序列余震活动水平不高的主要原因;距主震约30 km的北东方向余震区后续地震活动受到了主震产生的动态和静态应力变化的共同触发作用,动态应力变化峰值为2.78 MPa,静态应力变化为0.80 MPa,这与该区余震较为活跃相一致;距主震约45 km的北部余震区受到动态应力触发作用,应力变化峰值为0.72 MPa. ② MS7.3地震产生的动态库仑应力变化空间分布呈非对称性,其中北东方向、北部余震分布与动态应力变化正值区存在相关性,从应力变化的角度解释了MS7.3地震的后续余震空间活动特征. ③ MS7.3地震在沙雅、伽师地区的远场接收点产生的动态应力变化峰值分别为0.09 MPa、0.1 MPa,对两个区域的小震活动具有动态触发作用. 相似文献
15.
2008年3月21日新疆于田发生MS7.3级地震,2014年2月12日于田再次发生MS7.3级地震,两次地震相距约110 km.但是,前者震源机制为正断层,后者震源机制为左旋走滑断层.为进一步探讨这两次地震的孕育应力环境、发震机制及其动力学成因,本文进行三维有限元数值试验分析,计算了该区域在GPS约束条件下的速度场、应力和应变场变化,并与实际观测资料进行对比.数值计算得到的区域内几条主要大的走滑断层错动性质,与实际地质观察到的断层左旋或右旋性质吻合,验证了计算结果的可靠性.结果表明于田及其临近区域整体上处于北东-南西向挤压和北西-南东向拉张状态.在GPS速度约束条件下,2008年于田地震震中区域最大主张应变率大于最大主压应变率,处于以拉张为主的应力状态,NE走向断层受到北东-南西方向的拉应力作用,从而形成正断层;2014年于田地震处于拉张应变率与压应变率几乎一致的区域,NEE走向断层在NE-SW主压应力和NW-SE主张应力作用下发生左旋走滑. 相似文献
16.
基于GF-1卫星影像解译2014年新疆于田M_S7.3地震同震地表破裂带 总被引:2,自引:0,他引:2
2014年2月12日新疆于田发生MS7.3地震,震中位于平均海拔5 500m的藏北地区。本文利用国产GF-1号卫星对震前、震后数据进行对比解译,快速获取了该次地震的同震地表破裂带,破裂带沿硝尔库勒盆地南缘的多个洪积扇体后缘发育,断续延伸,走向NEE62°,以弧形断层陡坎为主,未见明显水平位错,长度约9km。阿尔金断裂在硝尔库勒盆地共发育3条分支断裂,均发育古地震破裂带,其中沿盆地北缘和中部的分支断裂未见同震破裂,最新地表破裂带位于南缘断裂的东北段。结合震后余震分布,确认该次地震的发震构造为硝尔库勒南缘断裂,是青藏高原北部阿尔金断裂带西段尾端张性区的一次新破裂事件。本次应用也展现了国产高分辨率数据在中国西部高海拔地区地震应急工作中所发挥的重要作用。 相似文献
17.
We relocated M8.0 Wenchuan earthquake and 2706 aftershocks with M⩾2.0 using double-difference algorithm and obtained relocations of 2553 events. To reduce the influence of lateral variation
in crustal and upper mantle velocity structure, we used different velocity models for the east and west side of Longmenshan
fault zone. In the relocation process, we added seismic data from portable seismic stations close to the shocks to constrain
focal depths. The precisions in E-W, N-S, and U-D directions after relocation are 0.6, 0.7, and 2.5 km respectively. The relocation
results show that the aftershock epi-centers of Wenchuan earthquake were distributed in NE-SW direction, with a total length
of about 330 km. The aftershocks were concentrated on the west side of the central fault of Longmenshan fault zone, excluding
those on the north of Qingchuan, which obviously deviated from the surface fault and passed through Pingwu-Qingchuan fault
in the north. The dominant focal depths of the aftershocks are between 5 and 20 km, the average depth is 13.3 km, and the
depth of the relocated main shock is 16.0 km. The depth profile reveals that focal depth distribution in some of the areas
is characterized by high-angle westward dipping. The rupture mode of the main shock features reverse faulting in the south,
with a large strike-slip component in the north.
Supported by the Basic Research Project of Institute of Geophysics, China Earthquake Administration (Grant No. DQJB08Z03) 相似文献
18.
《中国科学D辑(英文版)》2008,(12)
We relocated M8.0 Wenchuan earthquake and 2706 aftershocks with M≥2.0 using double-difference algorithm and obtained relocations of 2553 events. To reduce the influence of lateral variation in crustal and upper mantle velocity structure, we used different velocity models for the east and west side of Longmenshan fault zone. In the relocation process, we added seismic data from portable seismic sta-tions close to the shocks to constrain focal depths. The precisions in E-W, N-S, and U-D directions after relocation are 0.6, 0.7, and 2.5 km respectively. The relocation results show that the aftershock epi-centers of Wenchuan earthquake were distributed in NE-SW direction, with a total length of about 330 km. The aftershocks were concentrated on the west side of the central fault of Longmenshan fault zone, excluding those on the north of Qingchuan, which obviously deviated from the surface fault and passed through Pingwu-Qingchuan fault in the north. The dominant focal depths of the aftershocks are between 5 and 20 km, the average depth is 13.3 km, and the depth of the relocated main shock is 16.0 km. The depth profile reveals that focal depth distribution in some of the areas is characterized by high-angle westward dipping. The rupture mode of the main shock features reverse faulting in the south, with a large strike-slip component in the north. 相似文献