首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
This study assessed the levels of marine debris pollution and identified its main sources in Korea. The surveys were bimonthly conducted by NGO leaders and volunteers on 20 beaches from March 2008 to November 2009. The quantities of marine debris were estimated at 480.9 (±267.7) count  100 m−1 for number, 86.5 (±78.6) kg  100 m−1 for weight, and 0.48 (±0.38) m3  100 m−1 for volume. The level of marine debris pollution on the Korean beaches was comparable to that in the coastal areas of the North Atlantic ocean and South Africa. Plastics and styrofoam occupied the majority of debris composition in terms of number (66.7%) and volume (62.3%). The main sources of debris were fishing activities including commercial fisheries and marine aquaculture (51.3%). Especially styrofoam buoy from aquaculture was the biggest contributor to marine debris pollution on these beaches.  相似文献   

2.
The state of knowledge of the Central European water mite fauna and the research history are briefly surveyed. Several areas for which we are provided with rich data sets are of high value for the monitoring of faunistic trends on the background of local and global environmental change. The need for a database combining historical and actual faunistic information is stressed. It should facilitate the access to all data from former times, give a survey on actual activities by regular updates, and help for a better organization of future research activities. On the base of an update of the Limnofauna Europaea (K.O. Viets 1978, Gerecke in www.watermite.org) a first attempt is made to (1) recognize changes in the Central European fauna during the past 100 years; (2) emphasize species which may be endangered or have disappeared during the past 100 years. At the present state of knowledge, the degree of threat to water mite species in this area is best calculated from their preference for particular habitat types which are rare and in danger to disappear in cultivated landscapes. Our knowledge concerning neozoic water mites in the study area is discussed.  相似文献   

3.
 In situ measurement of volcanic eruption velocities is one of the great challenges left in geophysical volcanology. In this paper we report on a new radar Doppler technique for monitoring volcanic eruption velocities. In comparison with techniques employed previously (e.g., photographic methods or acoustic Doppler measurements), this method allows continuous recordings of volcanic eruptions even during poor visibility. Also, radar Doppler instruments are usually light weight and energy efficient, which makes them superior to other Doppler techniques based on laser light or sound. The proposed new technique was successfully tested at Stromboli Volcano in late 1996 during a period of low activity. The recorded data allow a clear distinction between particles rising from the vent and particles falling back towards the vent. The mean eruption velocity was approximately 10 m/s. Most of the eruptions recorded by radar were correlated to seismic recordings. The correlation between the magnitude of the volcanic shocks and the eruption force index defined in the paper may provide new insights into magma transport in the conduit. Received: 15 May 1998 / Accepted: 15 December 1998  相似文献   

4.
This paper presents a formulation for estimation of the frequency and damping of a soil‐structure interaction system based on the classical modal analysis and solving the system eigenvalue problem. Without loss of generality, the structure is represented by a single degree of freedom oscillator, while the soil effects are included through impedance functions for in‐plane motion of a 2D rigid foundation. For the results presented in this paper, the impedance functions were computed by the indirect boundary element method for a rectangular foundation embedded in a soil layer over elastic bedrock. The study shows that the classical modal‐analysis approach works well, with the exception of squat, stiff structures, even though the impedance functions are frequency‐dependent and the soil‐structure interaction system does not possess normal modes. The study also shows that system frequency and damping are independent of the wave passage effects, contrary to findings of some previous studies, and that the site conditions, represented by the soil‐layer thickness and stiffness contrast between bedrock and soil layer, have significant influences on both system frequency and system damping. Finally, the paper examines the accuracy of some of the simple methods for estimation of these two system parameters and comments on some conflicting conclusions of previous studies about the effects of foundation embedment.  相似文献   

5.
Osmotically pumped fluid samplers were deployed in four deep-sea boreholes that were drilled during Ocean Drilling Program (ODP) Leg 168 on the eastern flank of the Juan de Fuca Ridge. Samplers were recovered from ODP Sites 1024 and 1027 and aliquots were analyzed for a variety of dissolved ions. Results from both of the samplers show a drastic change in the major ion composition within the first 20-40 days after the borehole was sealed at the seafloor followed by a more gradual change in composition. This gradual change ceased after 820 days at Site 1024 but continued throughout the 3-year deployment at Site 1027. We modeled this change in composition to estimate the flux of formation fluid through the open borehole. The rapid early change requires a flow of ∼1500 kg of formation fluid per day. The more gradual later change requires flow rates of 38 kg/day at Site 1024 and 17.5 kg/day at Site 1027. The latter fluxes require a minimum average specific discharge of meters to hundreds of meters per year through the surrounding basaltic matrix. Trace element data show surprisingly little contamination given the presence of steel casing, Li-organic-rich grease at each joint, cement, and drilling muds. Observed changes in trace element concentrations relative to those of bottom seawater provide a measure for the global significance of cool (23°C; ODP Site 1024) ridge flank hydrothermal systems relative to warm (64°C; Baby Bare and ODP Site 1027) hydrothermal systems and illustrate the importance of these cooler systems to global geochemical budgets.  相似文献   

6.
The use of electrical resistivity tomography (ERT; non‐intrusive geophysical technique) was assessed to identify the hydrogeological conditions at a surface water/groundwater test site in the southern Black Forest, Germany. A total of 111 ERT transects were measured, which adopted electrode spacings from 0·5 to 5 m as well as using either Wenner or dipole‐dipole electrode arrays. The resulting two‐dimensional (2D) electrical resistivity distributions are related to the structure and water content of the subsurface. The images were interpreted with respect to previous classical hillslope hydrological investigations within the same research basin using both tracer methods and groundwater level observations. A raster‐grid survey provided a quasi 3D resistivity pattern of the floodplain. Strong structural heterogeneity of the subsurface could be demonstrated, and (non)connectivities between surface and subsurface bodies were mapped. Through the spatial identification of likely flow pathways and source areas of runoff, the deep groundwater within the steeper valley slope seems to be much more connected to runoff generation processes within the valley floodplain than commonly credited in such environmental circumstances. Further, there appears to be no direct link between subsurface water‐bodies adjacent to the stream channel. Deep groundwater sources are also able to contribute towards streamflow from exfiltration at the edge of the floodplain as well as through the saturated areas overlying the floodplain itself. Such exfiltrated water then moves towards the stream as channelized surface flow. These findings support previous tracer investigations which showed that groundwater largely dominates the storm hydrograph of the stream, but the source areas of this component were unclear without geophysical measurements. The work highlighted the importance of using information from previous, complementary hydrochemical and hydrometric research campaigns to better interpret the ERT measurements. On the other hand, the ERT can provide a better spatial understanding of existing hydrochemical and hydrometric data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO3? and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO3?, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ18O and δ2H values of groundwater were also different between the two zones. Hydrochemical and δ18O? δ2H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO3?. The 3H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ18O and δ2H values and lower d‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号