首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
金沙江金坪子堆积体成因的初步研究   总被引:3,自引:0,他引:3  
金坪子堆积体位于康滇构造带上,在形态特征上类似滑坡堆积体。根据金坪子堆积体的DEM和实地调查,将堆积体按地貌类型划分为八个部分:上斜坡、泥石流扇、金坪子古沟谷堆积平台、金沙江谷坡、金沙江阶地、现代金沙江巨砾岩块滩地、金沙江离堆山、硝沟沟谷。通过分析金坪子堆积体各地貌单元的重矿物组合特征、TL测年数据和钻孔资料,认为金坪子堆积体是多种动力元在不同时代共同作用形成的一个复式堆积体,它是三套分别以老金沙江、古金沙江和现代金沙江为轴心的地貌体系时空更替的产物。乌东德峡谷贯通,老金沙江金坪子深潭形成,195.00±9.70 kaB.P.金坪子深潭开始被充填,角砾岩开始形成;137.00±6.80 kaB.P.坡积物充填胶结结束,老金沙江最高洪水位达到1 070 m;金沙江改道,并在915 m发育漫滩相阶地堆积物,其年代为41.13±3.49 kaB.P.;之后,金沙江表现为强烈深切,形成金沙江离堆山。  相似文献   

2.
金沙江其宗河段河谷演化及其工程效应   总被引:1,自引:0,他引:1  
金沙江其宗河段实地调研揭示:该河段共发育Ⅳ级阶地,其中Ⅳ级阶地卵砾石比Ⅲ级阶地的风化程度强得多;测年显示Ⅳ级阶地形成年代距今约80~90 ka,Ⅲ级阶地形成距今仅40~50 ka,取自zk204钻孔下部炭化木的14C测年为45 ka,这表明Ⅳ级阶地形成后,河谷一直下切到基覆界面,回填加积至现今Ⅲ级阶地的高度,然后又重新下切,形成Ⅲ级、Ⅱ级及Ⅰ级阶地,在形成程式上与川西河谷演化有较为明显的差异.由于河床覆盖层中、下部形成于晚更新世,具有超固结效果,不但承载力高而且不具有液化性.  相似文献   

3.
陈艺鑫  张梅  李川川  李英奎  刘耕年 《地理学报》2011,66(11):1540-1550
格尔木河河谷中发育有四级河流阶地,均形成于末次冰盛期之后。阶地的形成由构造抬升驱动,四级阶地代表的河流下切过程反映了四次阶段性构造抬升。以三岔河和纳赤台为代表的中游河段,四次河流阶段性下切速率分别为16~13 ka BP (T4-T3),3.33~9.33 mm/a;13~11 ka BP (T3-T2),5.5~12 mm/a;11~5 ka BP (T2-T1),0.33~1 mm/a;5 ka BP (T1 至今),0.6~0.8 mm/a,下切速率自T4 至T1 先增快后减慢。上游小南川河段5 ka BP以来的平均下切速率为4 mm/a,显著大于三岔河和纳赤台河段,同期河流溯源侵蚀速率也较快,表明小南川局部地区全新世中期抬升强烈,应为西大滩断裂强烈活动所致。受区域性构造活动差异影响,格尔木河河流阶地在局部地区出现变形,其中在三岔河和最老冲积扇扇顶存在两个下切幅度和速度高峰值,而纳赤台河段下切和缓。表明控制昆仑河和野牛沟发育的昆仑河-野牛沟断裂、山前的红石沟断裂自末次冰盛期以来持续活动。其中,昆仑河-野牛沟断裂16~13 ka BP活动速率较快,到13~11 ka BP达到最快,11 ka BP后减慢,与河流中下游整体构造活动趋势一致。  相似文献   

4.
金沙江巧家—蒙姑段的阶地发育与河谷地貌演化   总被引:2,自引:0,他引:2  
金沙江水系演化与河谷发育问题长期以来是地质地貌学界关注的重大问题,目前仍存在较大争议。河流阶地及其相关沉积是河谷发育过程的产物,可以提供河谷发育的时代与形式等诸多信息。金沙江在巧家—蒙姑段河谷中,葫芦口附近发育和保存了8级基座阶地,结合光释光和电子自旋共振测年方法,依据古气候资料,推断T6~T1的下切时间分别对应于深海氧同位素(MIS)的36/35、34/33、24/23、20/19、14/13和4/3阶段,即气候由冷至暖的转型期。青岗坝附近则发育了5级由堰塞湖相沉积组成的堆积型阶地,指示了中更新世以来该段河谷在下切过程中经历了频繁的滑坡堵江堰塞,发育形式以“下切—滑坡—堰塞—堆积—下切”过程为主。此外,河流的平均下切速率自0.82 Ma以来由此前的0.56 mm/a下降至0.19 mm/a,表明中更新世以来频繁发生的堵江堰塞事件严重抑制了该段河谷的下切作用。综合流域内河流阶地序列及相关沉积的研究,金沙江下游段现代河谷的形成时代不晚于早更新世。  相似文献   

5.
河流阶地形成过程及其驱动机制再研究   总被引:4,自引:3,他引:1  
许刘兵  周尚哲 《地理科学》2007,27(5):672-677
河流阶地的形成是在内因(河流内部动力变化)和外因(低频和高频气候变化、构造运动、基准面变化)共同作用下的结果。受单一气候变化制约的河流阶地发育模式可以解释由于沉积物通量和径流量变化引起的河流堆积-侵蚀过程,但它难以解释形成多级阶地的逐步(或间歇性)下切过程。多级阶地的形成可能同时受到构造抬升和周期性气候变化的制约。由于下切过程的滞后效应,侵蚀和冰川均衡抬升、河谷的侧向侵蚀过程等影响,山地的构造抬升与河谷的下切之间并非一种简单的线性关系,应当慎用河谷的下切速率来代表山地的抬升速率。  相似文献   

6.
董铭  苏怀  史正涛  明庆忠  何回丽 《地理学报》2018,73(9):1728-1736
100多年来,关于金沙江独特水系格局的形成历史一直是地学界争论的重要话题之一。多数学者认为,现代金沙江水系是古长江袭夺古红河上游发展过来的。红河海底扇5.5 Ma泥沙供给中断被认为与这一袭夺事件有关。然而,长期以来人们一直没有找到与这一时代相匹配的地貌证据。最近在金沙江金江街段找到了多达8级的河流阶地序列,ESR测年结果显示这些阶地的形成年代为1.07 Ma、0.70 Ma、0.65 Ma、0.51 Ma、0.47 Ma、0.44 Ma、0.30 Ma和0.18 Ma,结合GPS高程测量数据,推算最近1.0 Ma以来的河谷平均下切速率为147 mm/ka。以填充河谷地形为主要手段的古地形恢复结果(基于DEM数据)显示,古长江袭夺古红河上游形成现代金沙江水系发生在这一区域内海拔2000 m左右的古地形面解体之后,依照河谷平均下切速率外推,古地形面解体时代为5.5 Ma,即现代金沙江水系形成于5.5 Ma之后。我们的研究结果与红河海底扇的资料形成一个相互呼应的证据链,为重建现代金沙江水系格局形成历史提供重要依据。  相似文献   

7.
对贵州清水江上游马寨、翁东、三江、施洞沿江4个剖面的阶地特征、年代学结果进行了综合分析。发现以凯里断层为界,上游地区的马寨和翁东2个剖面的T2阶地形成时代约为51~57 ka B.P.,T1阶地的形成时代约为25 ka B.P.,下游地区的三江和施洞2个剖面的T2阶地形成时代约为122~102 ka B.P.,T1阶地的形成时代约为78 ka B.P.。选取各剖面的T2阶地的基座高度来计算了河流下切速率,发现上游地区2个剖面(马寨、翁东)的河流下切速率较接近,约为0.41~0.34 m/ka,明显高于下游地区的2个剖面(三江、施洞)的0.16~0.20 m/ka,表现为上游下切速率高,越往下游方向下切速率逐渐降低。这表明自晚更新世以来,清水江上游区域受到构造作用的影响而发生差异抬升,具体表现为西部构造抬升幅度大,阶地下切速率快;东部构造抬升幅度小,阶地下切速率慢。  相似文献   

8.
庐山是位于江南造山带北缘的断块山,其抬升过程对于认识本区的构造演化至关重要。利用河流纵剖面的形态参数可以定量估算相对的构造抬升速率。基于5 m分辨率的DEM提取了庐山9条主要河流的纵剖面,依据坡度—面积图确定了裂点类型,结合地质图判别出裂点成因,并利用河流水力侵蚀模型计算了稳定态河段的陡峭指数以及凹曲度。结果显示,庐山的河流基本呈过渡态,以发育数量不等的裂点为标志;垂阶型裂点的形成主要与岩石强度不均一有关,而坡断型裂点是侵蚀基准面下降产生的。坡断型裂点以下的基岩河段具有较大的陡峭指数,表明庐山经历了从早期低抬升速率到晚期高抬升速率的转变。庐山受快速抬升影响的河段,陡峭指数具有南高北低的特点,主要是由于庐山整体抬升过程中南部、北部的抬升速率存在一定差异,亦可能是岩性不同造成的。  相似文献   

9.
青藏高原东缘水系的演化历史长期存在着重大争议,鉴于任一水系的形成演化都是通过主要河谷的发育及其不断延展与整合完成的,因此确定河谷发育的起始时代是研究水系演化的关键。本文针对渭河上游三阳川盆地最高级阶地形成时代的研究,发现李家小湾河流阶地砾石层的ESR年代为1.26±0.15 Ma和1.32±0.19 Ma,26Al/10Be埋藏年代为1.45±0.70 Ma和1.04±0.43 Ma,说明该段河谷形成于早更新世晚期。综合青藏高原东缘夷平面、剥蚀面与河流阶地的研究成果,推断该区现代河谷系列主要形成于1.2 Ma以后,河流平均下切速率较高,为0.1~0.32 m/ka,指示了中更新世以来该区快速的地表抬升与河谷发育过程;而其前少数地段的先成河谷下切速率介于0.04~0.29 m/ka之间,说明区域地势总体低平,地表过程以剥蚀夷平为主,即高原东缘的现今水系格局主要是第四纪期间构造和气候共同作用下河流侵蚀的产物。  相似文献   

10.
本文根据对无定河阶地高差沿程分布的二次相关分析和对黄土沟壑的隔时遥感测量,表明干流自Q_2~2以来平均下切速率为0.37Cm/yr;Q_4~3以来的下切速率为53Cm/yr。黄土沟壑的平均溯源侵蚀速率为1.5m/yr;流域面上的下蚀速率为0.17-2Cm/yr。  相似文献   

11.
贵州高原北部发育平缓丘丛和深切峰丛2种喀斯特地貌组合,保存于喀斯特山间盆地的河流阶地对区域地貌演化具有指示意义.本文根据阶地发育特征和光释光(OSL)测年,分析阶地形成的时代和动力,结合区域地质背景,探讨构造抬升和河流侵蚀对黔北喀斯特地貌演化的驱动作用.结果显示,绥阳盆地T1阶地时代18.8?8.2 ka,T2时代14...  相似文献   

12.
胡春生  潘保田  苏怀 《地理科学》2012,(9):1131-1135
根据黄土高原地区黄河阶地的形态特征和成因分析,认为其形成主要是地面抬升所致并且在黄河达到均衡状态下形成,可以推断黄土高原的地面抬升。根据对黄土高原地区黄河0.8 Ma阶地的研究并结合相关文献资料,选取兰州段、黑山峡段、晋陕峡谷段和三门峡段作为典型研究区域,得出黄土高原0.8 Ma以来的地面抬升存在显著的时空特征,即空间特征表现为地面抬升量有西大东小的规律,时间特征表现为地面抬升速率有后期加速趋势、特别是晚更新世以来。并认为黄土高原0.8 Ma以来的地面抬升与青藏高原的构造抬升有成因上的联系。  相似文献   

13.
Terrestrial cosmogenic nuclide (TCN) 10Be surface exposure ages for strath terraces along the Braldu River in the Central Karakoram Mountains range from 0.8 to 11 ka. This indicates that strath terrace formation began to occur rapidly upon deglaciation of the Braldu valley at  11 ka. Fluvial incision rates for the Braldu River based on the TCN ages for strath terraces range from 2 to 29 mm/a. The fluvial incision rates for the central gorged section of the Braldu River are an order of magnitude greater than those for the upper and lower reaches. This difference is reflected in the modern stream gradient and valley morphology. The higher incision rates in the gorged central reach of the Braldu River likely reflect differential uplift above the Main Karakoram Thrust that has resulted in the presence of a knickpoint and more rapid fluvial incision. The postglacial fluvial incision rate (2–3 mm/a) for the upper and lower reaches are of the same order of magnitude as the exhumation rates estimated from previously published thermochronological data for the Baltoro granite in the upper catchment region and for the adjacent Himalayan regions.  相似文献   

14.
川西高原杂谷脑河阶地的形成   总被引:8,自引:0,他引:8  
根据野外实地地貌调查,确定了川西高原杂谷脑河理县段发育了8级阶地,并对阶地沉积物进行了ESR年代测试,初步确定杂谷脑河第II,III,IV,VI级阶地约形成于距今54,125,248,481ka。阶地成因分析表明这些主要阶地序列主要是构造隆升的结果,因此,杂谷脑河各级主要阶地分别代表了川西高原中更新世以来的几次隆升事件。根据阶地高程和阶地形成年代确定的杂谷脑河下蚀速率为0.39m/ka,与大地测量获得的龙门山隆升速率 (0.3~0.4m/ka) 相一致。  相似文献   

15.
金沙江奔子栏-达日河段大型泥石流堆积扇的成因机制   总被引:1,自引:0,他引:1  
金沙江上游奔子栏-达日河段属横断山区的干热河谷地带,河谷沿岸大型古泥石流堆积扇广泛发育,其成因却一直没有得到很好的研究.对该区瓦卡大型古泥石流堆积物进行了沉积结构、粒度、地球化学和孢粉等分析,揭示了泥石流的沉积环境及其形成过程.通过粗颗粒石英的光释光单片再生法(SAR)测年研究,获得金沙江上游奔子栏-达日河段古泥石流大规模暴发的年代为12 600~4 500 a BP.丰富的风化碎屑物源、陡峻的地形及雨季降水集中是该区古泥石流形成的主要原因.全新世早期青藏高原东南缘受西南季风加强的影响,气候趋于暖湿,季节性暴雨增加.金沙江上游干热河谷区大型泥石流堆积扇的发育年代暗示其是全新世早期西南季风加强作用下的地貌响应.从地质灾害防治的角度,由于现代气候因素导致泥石流灾害的频度和规模较小,预防该区地质灾害的重点应是防止人工砍伐树木和不合理的人工切坡导致对地表环境的破坏加剧.  相似文献   

16.
宛川河阶地的年代与下切机制   总被引:4,自引:3,他引:1  
宛川河是黄河一条小规模支流,在榆中盆地中发育了至少四级堆积阶地。以"古土壤断代法"为基础,结合OSL测年和14C测年,较准确的确定了宛川河四级阶地形成的年代为330、130、50和10 ka。区域构造表明榆中盆地相对下陷,地面抬升不是引起河流下切的主要原因,同时阶地位相说明作为宛川河侵蚀基准面的黄河对宛川河下切影响只限于距河口不远的一小段距离。每级阶地面上都堆积一层古土壤指示宛川河下切于古土壤开始发育时期,对应于气候由冷干向暖湿转换的时期,河流下切的主要原因是气候变化。  相似文献   

17.
The New River crosses three physiogeologic provinces of the ancient, tectonically quiescent Appalachian orogen and is ideally situated to record variability in fluvial erosion rates over the late Cenozoic. Active erosion features on resistant bedrock that floors the river at prominent knickpoints demonstrate that the river is currently incising toward base level. However, thick sequences of alluvial fill and fluvial terraces cut into this fill record an incision history for the river that includes several periods of stalled downcutting and aggradation. We used cosmogenic 10Be exposure dating, aided by mapping and sedimentological examination of terrace deposits, to constrain the timing of events in this history. 10Be concentration depth profiles were used to help account for variables such as cosmogenic inheritance and terrace bioturbation. Fill-cut and strath terraces at elevations 10, 20, and 50 m above the modern river yield model cosmogenic exposure ages of 130, 600, and 600–950 ka, respectively, but uncertainties on these ages are not well constrained. These results provide the first direct constraint on the history of alluvial aggradation and incision events recorded by New River terrace deposits. The exposure ages yield a long-term average incision rate of 43 m/my, which is comparable to rates measured elsewhere in the Appalachians. During specific intervals over the last 1 Ma, however, the New River's incision rate reached 100 m/my. Modern erosion rates on bedrock at a prominent knickpoint are between 28 and 87 m/my, in good agreement with rates calculated between terrace abandonment events and significantly faster than 2 m/my rates of surface erosion from ancient terrace remnants. Fluctuations between aggradation and rapid incision operate on timescales of 104− 105 year, similar to those of late Cenozoic climate variations, though uncertainties in model ages preclude direct correlation of these fluctuations to specific climate change events. These second-order fluctuations appear within a longer-term signal of dominant aggradation (until 2 Ma) followed by dominant incision. A similar signal is observed on other Appalachian rivers and may be the result of sediment supply fluctuations driven by the increased frequency of climate changes in the late Cenozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号