首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
为满足高速铁路对路基工后沉降及长期动力稳定性的要求,并为黄土地区路基填料的选择提供参考,本文分别通过短时及疲劳动三轴实验对水泥改良黄土的动力稳定性评价参数(短时及疲劳动剪应变门槛)随水泥掺量、围压及固结比的变化进行了研究,并探讨了两者之间的量值关系,以期通过方便快速的短时动三轴实验得到疲劳动剪应变门槛。研究结果表明:短时条件下,竖向塑性应变随动应力的增加逐渐增加,最终呈现出脆性破坏的特点,而随水泥掺量、围压及固结比的增大逐渐减小;动模量Ed随动应力σd的增加呈现出先增大后减小的趋势,而与水泥掺量、围压及固结比的增长呈现正相关规律;随着水泥掺量、围压及固结比的增大水泥改良黄土短时及疲劳动剪应变门槛、动应力门槛均呈近似线性增加;同一条件下,水泥改良黄土的疲劳动剪应变门槛与短时动剪应变门槛的比值在0.29~0.34之间,随围压及固结比的增大变化较小。  相似文献   

2.
红粘土动本构关系与动模量衰减模型   总被引:2,自引:1,他引:1       下载免费PDF全文
针对高速交通循环荷载下红粘土路堑基床的动力稳定性问题,基于大量室内动三轴试验,研究了不同试验条件下原状结构红粘土动本构关系及动模量衰减规律。试验成果表明:原状结构红粘土动本构关系仍可用R.L.Kondner双曲线模型描述;动模量随动应变的增大非线性减小,具有明显的应变软化特征。围压、固结比、含水比对红粘土动本构特征及动模量衰减规律均有明显影响。不考虑其它因素,随围压或固结比的增大,动本构曲线逐渐偏向应力轴,随含水比的增大,动本构曲线逐渐偏离应力轴。同等条件下,动模量随围压、固结比的增大而增大,随含水比的增大而减小。基于回归分析,给出了不同试验条件下原状结构红粘土双曲线模型参数、动模量衰减经验公式及其拟合参数。  相似文献   

3.
刘方成  尚守平  王海东 《岩土力学》2010,31(5):1437-1444
对一种粉质黏土进行了不同固结压力下的循环单剪试验,得到了相应各固结压力下的动剪模量和阻尼比随动剪应变幅值非线性变化的 曲线和 曲线,并对其进行了归一化。试验结果表明,即使是归一化以后的动力特性曲线,仍然因固结压力不同而出现差异;固结压力越大, 曲线衰减越慢,而 曲线增加也越缓。通过建立最大动剪模量、最大阻尼比和参考剪应变与固结压力之间的试验关系式,建议了一种实用的固结压力相关的黏土动力特性模型。最后,通过算例表明,场地土体动力特性随固结压力而变化的特征不但会影响场地地震反应的幅值,而且将影响其频谱特性,且场地覆盖层厚度越大,影响越强烈。  相似文献   

4.
为研究循环荷载下原状红黏土路基的动力特性,采用SDT-20型动三轴仪对原状红黏土进行了分级循环动三轴试验,研究了围压、频率及动应力幅值对原状红黏土的动应力、动弹性模量-动应变( Edd)和动剪切模量-动剪切应变( Gdd)关系曲线的影响规律。结果表明:原状红黏土的动应力-动应变关系曲线发展规律可采用Kondner模型进行描述;动应力随动应变先急剧增大后趋于平稳,并给出了急剧增加时动应变的取值范围,即0%~0.05%;分析了不同围压、振动频率下红黏土的动弹性模量及动剪切模量的变化规律,当动应变小于临界值时,红黏土动弹性模量随动应变的增大而增大;当动应变大于临界值时,红黏土材料动弹性模量随动应变的增大而减小,动剪切模量具有相同变化规律;结合红黏土的动力特性变化规律,利用围压对动弹性模量进行折减,在Darendeli模型的基础上建立了红黏土路基动弹性模量、动剪切模量的分段预测模型,经拟合验证,本文分段模型的适用性较好,可预测分级循环荷载下红黏土的动弹性模量-动应变(Edd)和动剪切模量-动剪切应变(Gdd)关系曲线发展趋势。  相似文献   

5.
卿启湘  王永和  赵明华  万智 《岩土力学》2008,29(5):1396-1402
运用D’Alembert原理和能量弱变分,建立了板式轨道-软岩路基系统半空间垂向耦合的动力计算模型,研究了高速铁路板式轨道-软岩路基系统的动态响应特征,获得了基床面上和软岩路堤面上各种动态响应值,将其作为确定基床厚度和基床表层厚度的前提依据,以指导无碴轨道路基结构的设计与施工。通过室内试验,对软岩及软岩填料的一般路用性能进行了研究,用其来判断软岩能否作为高速铁路无碴轨道基床以下部分填料的必要条件。  相似文献   

6.
膨胀土地区路堑基床病害是高速铁路建设中倍受关注的问题。结合云桂高速铁路工程实际,以典型膨胀土新型路堑基床为基础,借助有限差分软件FLAC3D,建立了三维路堑基床动力分析模型,探讨了列车荷载作用下新型全封闭路堑基床动力特性,并结合现场试验进行了分析。分析结果表明:数值模拟结果可较好地反映基床动响应变化规律,且与现场实测变化趋势相同;基床竖向动应力随深度呈指数型衰减,基床竖向动位移随深度呈幂函数型衰减;路基面动位移值为0.95 mm,满足高速铁路规范要求;基床动响应特征受服役环境影响显著,浸水条件下会引起基床表层动应力及振动速度增大;铺设防排水结构层可改善基床内的动应力分布,并减小路基面的动位移及增强基床抗振性能。研究成果可为膨胀土地区高速铁路工程实践及理论研究提供参考。  相似文献   

7.
潘华  陈国兴  孙田 《岩土力学》2011,32(Z1):346-0350
利用空心圆柱扭剪(HCA)仪,针对原状海洋粉质黏土,通过循环三轴及循环扭剪试验,得出相应的杨氏模量、剪切模量和动泊松比,探讨了有效固结围压、固结应力比对动泊松比的影响。试验结果表明:土体的动泊松比随着广义剪应变的增大而增大;有效固结围压、固结应力比均对动泊松比有显著的影响,动泊松比随着有效固结围压、固结应力的增大而逐渐减少;且随着广义剪应变的增大,两者对动泊松比的影响减小,当广义剪应变增大到1.8×10-2左右,试验终止,此时土体动泊松比约为0.48。试验中未出现动泊松比大于0.5的现象,说明土体未出现剪胀现象,试验所采用的粉质黏土在循环荷载作用下具有较好的稳定性  相似文献   

8.
循环荷载下黏土应变积累积强化模型研究   总被引:2,自引:1,他引:1  
刘方成  尚守平  王海东 《岩土力学》2008,29(9):2457-2462
循环加载历史是影响土的动力特性的一个重要因素。通过对一种原状粉质黏土进行高循环次数单剪试验,研究了黏土体应变随剪应变幅值及循环次数的变化规律,以及由于体应变的累积对黏土动力特性产生的影响。试验结果表明,黏土的体应变随着循环次数的增多和循环剪应变幅值的增大而增大,而土的动力特性则随着体应变的不断累积而出现强化现象,表现为动剪模量增加,阻尼比减小。对累积体应变与动剪模量、阻尼比之间的关系进行了研究,提出了相应的强化关系式。在常用的非线性模型基础上,通过引入动剪模量的强化系数和阻尼比的衰减系数,建立了一种能考虑循环应变历史影响的土动力模型。  相似文献   

9.
无碴轨道路基基床动力特性的研究   总被引:5,自引:0,他引:5  
詹永祥  蒋关鲁 《岩土力学》2010,31(2):392-396
以遂渝线无碴轨道路基为背景,通过室内模型试验研究,分析了在循环加载条件下路基基床的动态力学特性。试验结果表明,动应力响应在基床表层横断面方向上呈“W”形分布,混凝土基础板轨下位置响应最大,中线处和端部响应较小,但随着深度的增加,逐渐变为盆形分布特征;在基床表层范围内,动态响应最为强烈,且随深度的增加,衰减速率较快;加载频率对动应力影响较小,对动位移及加速度影响较大。另外,在遂渝线无碴轨道综合试验段现场实车试验中,分别进行了CRH2型动车组和货物列车不同运行速度下路基基床的动力学响应测试研究,验证并评价了遂渝线无碴轨道路基基床工程适应性。  相似文献   

10.
《岩土力学》2015,(9):2591-2598
利用SDT-20型动三轴仪探究了黄土在双向动荷载下的动剪切模量特性。试验结果表明:初始循环偏应力和径向动荷载幅值对黄土的动剪切模量-动剪应变曲线没有明显影响,其对黄土的动剪切模量-循环次数曲线却有明显影响,初始循环偏应力和径向动荷载幅值越大,相同循环次数下黄土的动剪切模量越小。动剪切应变相等时,黄土的动剪切模量随固结比的增大而增大。双向动荷载作用下黄土存在临界循环偏应力,其值为0 k Pa。当循环偏应力小于临界值时,动剪切模量随动剪应变的增大而增大;当循环偏应力大于临界值时,动剪切模量随动剪应变的增大而减小。利用拐点动剪切模量折减的方式,并同时结合修正Hardin-Drnevich模型,实现了对黄土在双向动荷载下动剪切模量-动剪应变关系的描述。经验证,模型的适用性较好。  相似文献   

11.
I型轨道-路基系统动力荷载放大系数模型试验研究   总被引:2,自引:0,他引:2  
高速列车行车时产生的动力荷载大小受多种因素影响,以列车运行速度的影响尤为关键。由于车辆-轨道-路基结构的复杂性,要通过理论计算准确地确定行车速度对动力荷载的影响并不容易。目前足尺物理模型试验已成为高速铁路无砟轨道路基结构动力性能研究的重要手段。根据沪宁城际无砟轨道设计和施工标准,建成室内1: 1无砟轨道路基模型,通过单个轮轴的动态激振试验获得I型轨道板动应变幅值及路基动土压力幅值随加载频率的变化规律,在该基础上得到列车动荷载随行车速度的变化规律。结合德国铁路动力荷载放大系数的计算公式,提出确定高速铁路I型轨道结构动力荷载放大系数的方法,并分别获得轨道板与路基结构动力荷载放大系数随列车运行速度的变化规律,可为我国I型轨道-路基系统设计动力荷载的确定提供依据。  相似文献   

12.
以京津高铁和杭州地铁沿线的两种典型粉质黏土为研究对象,并采用英国GDS多功能三轴仪完成了静、动力强度测试,研究了两种土的静力不排水抗剪强度和在交通荷载高振次循环下的动强度、临界动应力比、应变发展模式以及振后抗剪强度等方面的差异。对比发现,长期循环荷载作用下两种土的应变发展和振后强度均有很大不同。与京津地区粉质黏土相比,杭州地铁沿线土含水率高、孔隙比大、密度低、灵敏度高、强度低。两种原状土在小幅振动后土体强度略有增大,而随振幅增大,振后强度将低于未经历振动时的不排水强度值;而重塑土振后强度均低于静剪强度。  相似文献   

13.
基床翻浆条件下无砟轨道路基振动特性研究   总被引:2,自引:0,他引:2  
张文超  苏谦  刘亭  刘宝  孙文 《岩土力学》2014,35(12):3556-3562
无砟轨道路基翻浆是近年高速铁路路基出现的特殊病害形式,为研究基床翻浆对无砟轨道路基动力特性的影响,在沪宁城际路基翻浆工点进行了病害勘查和现场行车试验,分析了列车荷载作用下翻浆段无砟轨道路基振动特性。结果表明:无砟轨道路基翻浆病害的形成主要与基床表层级配碎石细粒含量较高以及底座板伸缩缝、侧缝封闭不严有关;基床翻浆导致路基对轨道结构支承及约束作用降低,加剧了无砟轨道结构的振动,其中底座板振动放大效应尤其明显,且振动放大效应随车速增加而增大;基床翻浆改变了无砟轨道与路基基床间振动波传递状态,限制了路基基床参振耗能作用的发挥,翻浆断面路基面动位移幅值减少45%,底座板到路基面动位移传递函数减小约2/3,当列车速度为247 km/h时,在路基受动荷载主要作用频率范围内(0~15 Hz),其动位移传递函数处于0.22~0.39间。  相似文献   

14.
路基沉降预测的三点修正指数曲线法   总被引:2,自引:0,他引:2  
陈善雄  王星运  许锡昌  余飞  秦尚林 《岩土力学》2011,32(11):3355-3360
科学、合理地预测路基工后沉降量是高速铁路建设的关键环节。针对武广高速铁路路基沉降量级小、数据相对波动大的实测数据,探讨了指数曲线法对无砟轨道路基沉降预测的适用性,发现指数曲线法不能直接应用于量级小、数据相对波动较大的沉降预测。把三点法的基本思想引入指数曲线模型,对指数曲线法进行了改进,提出了路基沉降预测的三点修正指数曲线模型。结合武广高速铁路路基沉降观测数据,分析了三点修正指数曲线模型的特性。分析表明,在整个沉降曲线上选取3个关键点作为预测样本,很好地回避了数据波动带来的影响;沉降曲线上“拐点”以后的沉降规律更符合指数曲线模型,因此,应取沉降曲线上“拐点”以后的数据作为样本值,所取三点应能尽量反映沉降发展的趋势。三点修正指数曲线法预测结果稳定、相关系数高,具有一定的工程应用价值  相似文献   

15.
针对非饱和重塑粉土,利用改进的可控制吸力式非饱和土静力-动力液压三轴-扭转多功能剪切仪,进行了多组固结排水非饱和土静、动三轴试验,探讨了非饱和粉土静、动强度特性,分析了粉土静三轴强度随固结压力、吸力变化的规律,以及动强度随固结压力、吸力以及破坏振动次数变化的规律,研究表明粉土静、动强度之间具有很强的相关性。最后,通过归一化处理提出了利用粉土的静三轴强度推求相应的动力强度曲线的公式,从而达到在非饱和土地基稳定性分析中减少工作量的目的。  相似文献   

16.
杭州第四系软土动力特性试验与土结构性影响的探讨   总被引:3,自引:0,他引:3  
丁伯阳  张勇 《岩土力学》2012,33(2):336-342
受新构造运动和气候变化的影响,杭州第四系软土地层相变多而复杂,并具有一定的结构性。为了研究杭州市第四系结构性软土的动力特性,开展了一系列动三轴试验,从而得到工程场地土的动应力-应变骨干曲线以及相关动力特性参数。通过试验研究发现,地层沉积环境的变化使软黏土产生结构性,并对其初始动弹性模量Ed0产生较大的影响。但土的结构性对于最大动应变幅值的控制是随机的,影响并不明显。结构性软土层的剪切波速值与测试点深度之间基本呈幂函数的关系形式,但土结构性特点会使剪切波速与深度的统计关系图象出现分叉。此外,土的结构性对阻尼比与剪切模量的统计关系方程会有一定的影响。  相似文献   

17.
在深厚软土地基上修筑无砟轨道高速铁路低矮路基,需要重点解决好软土地基工后沉降和长期动力稳定性问题.软土地基具有高压缩性,路堤荷载作用下会产生较大的残余沉降;同时,线路运营后,地基土在高速列车长期循环动荷载作用下易产生较大的塑性变形,二者耦合将严重影响到无砟轨道的几何状态和线路运营安全.基于此,在京沪高速铁路上海虹桥深厚软土地区低矮路基中,首次采用了桩基-连续薄板梁结构型式,并进行了系统的静动态监测、测试.结果表明,该结构工后沉降控制效果良好、长期循环荷载作用下性能稳定,可以满足高速铁路铺设无砟轨道和高速列车长期平顺运行的要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号