首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sustainable management of land requires regular acquisition of qualitative information regarding the status of its use. It is especially important to track the changes relating to the land’s competitive development needs such as mining. The field-based monitoring of a mine with a wide footprint is expensive and time-consuming. Remote sensing techniques have been developed and demonstrated as cost-effective alternatives for the conventional methods of land use/land cover (LULC) monitoring. In this study, the land cover changes that occurred between the year of 2000 and 2009 in a kaolin mining and processing area in the Kutch region of India are mapped using two Landsat-5 Thematic Mapper (TM) images. For this purpose, the spectral signature of the land covers including vegetation cover and kaolin were determined and matched filtering (MF) method was applied to classify the images. The overall accuracy of the classified 2009 image was estimated for the kaolin and the vegetation cover to 89.5 and 86.0 % respectively. The change in the land use which occurred from 2000 to 2009 were quantified and analysed for both classes. This study provided a practical framework for rapid mapping of the land cover changes around open-cut kaolin mining area using freely available Landsat data.  相似文献   

2.
Land use/land cover change is a global phenomenon which reflects natural resources degradation and/or utilization. Remote sensing and GIS have been widely used to monitor such changes at watershed level. The present study evaluates the LU/LC change during 1989 - 2001 in a semi-arid watershed of central India. Geocoded satellite data of 1989 and 2001 on 1:50,000 scale, were visually interpreted to prepare thematic maps which were later digitized using ArcGIS softwares. The analysis shows that vast tracts of cultivated land have become uncultivated and at some places even converted to wasteland. However, the land under dense forest and open forest has decreased due to expansion of built-up land and other anthropogenic activities. Increase in area of uncultivated land, wasteland and decrease in cultivated land and open scrub is also supported by rainfall analysis, which shows a declining trend and a fall of 186.93 mm in average annual rainfall for 1986-2003 period. The change detection map prepared using land use/land cover of 1989 and 2001 as inputs shows that out of the total geographical area of the watershed, 25.78% of the watershed area has seen a change from one land use category to another, however rest 74.22% has remained unchanged.  相似文献   

3.
The objective of the present study was to delineate temporal and spatial changes in the coal fire and land use/cover within Bastacolla area of Jharia coal field. Studying this variation helped to decipher interconnection among the dynamics of the coal fire and concomitant changes in land use/cover. The detection of coal fires during a span of 14 years along with transitioning land use/cover was cost-effective and enabled planning for management of coal resources and environment. Landsat series of satellite data of 2002, 2009, 2013, and 2016 were processed for generating land surface temperature profiles vis-a-vis classified land use/cover of the study area. A single cut-off temperature was derived for mapping of coal fires using land surface temperature profile from 2002 to 2016. The satellite images were classified using support vector machines, and for depicting land use/cover change, post-classification change detection was done. Classification accuracy obtained was excellent with kappa coefficient ranging from 0.897 for classified image of 2002 to 0.799 for classified image of 2016. Results revealed that coal fires had shifted to the central west part of the area. Furthermore, pockets of coal fire from northern and eastern part of the study area have diminished. OB dumps and coal quarry/coal dump may be attributed towards the spatial change in coal fire while; OB dumps showed connotation with the highest temperature zones. Ground verifications for temperature profiles and coal fires were carried out using thermal camera which enunciated good agreement with results.  相似文献   

4.
In the current years, changing the land cover/land use had serious hydrological impacts affecting the flood events in the Kelantan River basin. The flood events at the east coast of the peninsular Malaysia got highly affected in the recent decades due to several factors like urbanisation, rapid changes in the utilisation of land and lack of meteorological (i.e. change in climate) and developmental monitoring and planning. The Kelantan River basin has been highly influenced due to a rapid change in land use during 1984 to 2013, which occurred in the form of transformation of agricultural area and deforestation (logging activities). In order to evaluate the influence of the modifications in land cover on the flood events, two hydrological regional models of rainfall-induced runoff event, the Hydrologic Engineering Center (HEC)-Hydrologic Modeling System (HMS) model and improved transient rainfall infiltration and grid-based regional model (Improved TRIGRS), were employed in this study. The responses of land cover changes on the peak flow and runoff volume were investigated using 10 days of hourly rainfall events from 20 December to the end of December 2014 at the study area. The usage of two hydrological models defined that the changes in land use/land cover caused momentous changes in hydrological response towards water flow. The outcomes also revealed that the increase of severe water flow at the study area is a function of urbanisation and deforestation, particularly in the conversion of the forest area to the less canopy coverage, for example, oil palm, mixed agriculture and rubber. The monsoon season floods and runoff escalate in the cleared land or low-density vegetation area, while the normal flow gets the contribution from interflow generated from secondary jungle and forested areas.  相似文献   

5.
This paper presents a case study of the Yellow River Delta in China, to trace land use and land cover changes during the past 20 years, with an emphasis on land quality changes. Three sets of data are used in this case study: remote sensing data derived from satellite images; crop yield data from statistics; and soil data collected by the researchers in the field. Our study reveals that at the regional scale, LUCC has taken place in a positive direction: vegetation cover has been expanding and crop yields per hectare have been on rise. However, while the overall eco-environment has improved, the improvement is uneven across the Delta region. At local levels, some areas show signs of increased salinization and declining organic content. Both natural forces and human activities are responsible for the LUCC, but human activities play a more important role. While some impacts of human activities are positive, the damages are often long-lasting and irreversible. We also conclude that it is necessary to use both macro data (such as remote sensing data) and micro data (data collected in the field) to study land quality change. The former are efficient in examining land quality changes at the regional scale, the latter can serve to verify ground patterns revealed from macro data and help to identify local variations, so as to get a comprehensive understanding of LUCC and promote sustainable land use and land management. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Land use/cover change has occurred at all times in all parts of the world. Most affected and involved in these processes are the environmental spheres of water, soil, and vegetative cover, which are closely linked to geomorphology, climate, fauna, and especially human societies. These linkages between spheres are highly complex and, as of yet, incompletely understood. The most profound questions with respect to land use/cover and global change are: “What forces drive land use/land cover change?”, “What impacts — direct and indirect, now and in the future — do these changes have on the environment and on human society?” and “Can and should we, and if so, how, respond to these changes?” This partial teaching module, developed under the auspices of the Second Commission on College Geography of the Association of American Geographers, introduces students to the complexities inherent in these questions, but mainly focusses on the first of these. It illustrates the central role of the study of land land use/cover change within the large field of global environmental and climatic change, and is thus a good unit to introduce this area of interest.  相似文献   

7.
The sustainability of water resources mainly depends on planning and management of land use; a small change in it may affect water yield largely, as both are linked through relevant hydrological processes, explicitly. However, human activities, especially a significant increase in population, in-migration and accelerated socio-economic activities, are constantly modifying the land use and land cover (LULC) pattern. The impact of such changes in LULC on the hydrological regime of a basin is of widespread concern and a great challenge to the water resource engineers. While studying these impacts, the issue that prevails is the selection of a hydrological model that may be able to accommodate spatial and temporal dynamics of the basin with higher accuracy. Therefore, in the present study, the capabilities of variable infiltration capacity hydrological model to hydrologically simulate the basin under varying LULC scenarios have been investigated. For the present analysis, the Pennar River Basin, Andhra Pradesh, which falls under a water scarce region in India, has been chosen. The water balance components such as runoff potential, evapotranspiration (ET) and baseflow of Pennar Basin have been simulated under different LULC scenarios to study the impact of change on hydrological regime of a basin. Majorly, increase in built-up (13.94% approx.) and decrease in deciduous forest cover (2.44%) are the significant changes observed in the basin during the last three decades. It was found that the impact of LULC change on hydrology is balancing out at basin scale (considering the entire basin, while routing the runoff at the basin outlet). Therefore, an analysis on spatial variation in each of the water balance components considered in the study was done at grid scale. It was observed that the impact of LULC is considerable spatially at grid level, and the maximum increase of 265 mm (1985–2005) and the decrease of 48 mm (1985–1995) in runoff generation at grid were estimated. On the contrary, ET component showed the maximum increase of 400 and decrease of 570 mm under different LULC change scenario. Similarly, in the base flow parameter, an increase of 70 mm and the decrease of 100 mm were observed. It was noticed that the upper basin is showing an increasing trend in almost all hydrological components as compared to the lower basin. Based on this basin scale study, it was concluded that change in the land cover alters the hydrology; however, it needs to be studied at finer spatial scale rather than the entire basin as a whole. The information like the spatial variation in hydrological components may be very useful for local authority and decision-makers to plan mitigation strategies accordingly.  相似文献   

8.
选择地处生态环境脆弱地区的晋陕蒙接壤地区能源化工基地的大柳塔矿区为研究区,利用1986年8月2日和2007年9月7日的TM卫星图像数据为信息源,应用遥感技术对其土地利用/覆盖变化进行研究。通过图像处理,划分出7种土地利用和地表覆盖景观类型,根据获取的景观类型变化参数对其结构与变化特征进行分析,得出研究区的生态变化趋势与驱动力。结果表明,煤矿大规模开采以来,研究区景观结构稳定性减弱,破碎度增强,人类活动在研究区生态环境变化过程中起主导作用。在矿区生态环境恢复中,应提高自然植被景观类型的有效规模,有利于增强生态系统的稳定性。  相似文献   

9.
Lake Chad in Africa experienced severe droughts in the 1970s and 1980s and overexploitations of water resulting in a decline of water level in the Lake and surrounding rivers. Such droughts and overexploitation of water caused a significant change of land use and water management practices over the last 50 years. Understanding the change of land use and land cover is, therefore, crucial to understand disturbance of the water cycle around the Lake. The present study analyzed satellite images of Lake Chad from Landsat-MSS, Landsat-TM, and NigeriaSat-1 to investigate the change of land cover during three time periods: the 1970s, 1991, and 2006. Unsupervised and supervised classifications were performed for the land cover analysis. The overall accuracies of the classification of Landsat-TM and NigeriaSat-1 are 93.33 and 95.24 %, respectively. It is evident that a 35 % decrease of waterbodies occurred from the 1970s to 1991, but a slight increase of 0.9 % occurred between 1991 and 2006. The Shrubland has overtaken most of the waterlog areas, as much as seven times of what it was in the 1970s. The interpretation of NigeriaSat-1 images indicates that NigeriaSat-1 has similar capabilities to Landsat-TM and Landsat-MSS for the detection of various land cover types because land cover and land use features are discernible on the processed images, especially depletion of waterbodies and vegetation. These are similarities justify the quality of the NigeriaSat-1 images for land cover and land use analysis.  相似文献   

10.
Human activities in many parts of the world have greatly changed the natural land cover. This study has been conducted on Pichavaram forest, south east coast of India, famous for its unique mangrove bio-diversity. The main objectives of this study were focused on monitoring land cover changes particularly for the mangrove forest in the Pichavaram area using multi-temporal Landsat images captured in the 1991, 2000, and 2009. The land use/land cover (LULC) estimation was done by a unique hybrid classification approach consisting of unsupervised and support vector machine (SVM)-based supervised classification. Once the vegetation and non-vegetation classes were separated, training site-based classification technology i.e., SVM-based supervised classification technique was used. The agricultural area, forest/plantation, degraded mangrove and mangrove forest layers were separated from the vegetation layer. Mud flat, sand/beach, swamp, sea water/sea, aquaculture pond, and fallow land were separated from non-vegetation layer. Water logged areas were delineated from the area initially considered under swamp and sea water-drowned areas. In this study, the object-based post-classification comparison method was employed for detecting changes. In order to evaluate the performance, an accuracy assessment was carried out using the randomly stratified sampling method, assuring distribution in a rational pattern so that a specific number of observations were assigned to each category on the classified image. The Kappa accuracy of SVM classified image was highest (94.53 %) for the 2000 image and about 94.14 and 89.45 % for the 2009 and 1991 images, respectively. The results indicated that the increased anthropogenic activities in Pichavaram have caused an irreversible loss of forest vegetation. These findings can be used both as a strategic planning tool to address the broad-scale mangrove ecosystem conservation projects and also as a tactical guide to help managers in designing effective restoration measures.  相似文献   

11.
Chah Nimeh reservoirs have served as a water storage facility, especially during droughts over the last three decades. It is also an important wintering site for migratory birds. In this study, thematic mapper time-series data were derived from Landsat images for prolonged droughts that occurred in two satellite images (2002 and 2011). The data derived from these images were used for the detection of changes in land cover and water storage in the reservoirs. First, a vegetation cover map was produced using soil-adjusted vegetation index and field sampling. Subsequently, land use/cover maps were generated using supervised and hybrid image classification method. Using the spatial change detector (SCD v1.0) software extension, the layers were combined and the change map was generated. The overall accuracy of the produced thematic images was assessed in regards to quantity and allocation disagreements. A total of five classes were defined in this investigation: deep water, shallow water, vegetation, salt land and bare land. The results showed that during the period of study, water volume reduced and vegetation cover increased, especially around the reservoirs that are important as shelter for wintering migratory birds. Comparison of land use/cover maps showed the increase in total available surface of shallow water, which indicated an increase in the habitats for surface feeding and diving birds.  相似文献   

12.
矿产资源开发在促进地方经济快速发展的同时也对区域土地资源带来严重影响.基于对甘肃敦煌某花岗岩矿开采状况实地调研,利用灰熵理论和主成分分析法分析了露天采矿对土地资源破坏主要影响因素及其关联度,建立了以主要影响因素为参数的矿山开采对土地资源影响预估模型.结果表明:采坑对矿区内土地资源影响最为显著,矿堆和矿渣堆的影响接近且较...  相似文献   

13.
The questions of how land use change affects climate, and how climate change affects land use, require examination of societal and environmental systems across space at multiple scales, from the global climate to regional vegetative dynamics to local decision making by farmers and herders. It also requires an analysis of causal linkages and feedback loops between systems. These questions and the conceptual approach of the research design of the Climate-Land Interaction Project (CLIP) are rooted in the classical human-environment research tradition in Geography.This paper discusses a methodological framework to quantify the two-way interactions between land use and regional climate systems, using ongoing work by a team of multi-disciplinary scientists examining climate-land dynamics at multiple scales in East Africa. East Africa is a region that is undergoing rapid land use change, where changes in climate would have serious consequences for people’s livelihoods, and requiring new coping and land use strategies. The research involves exploration of linkages between two important foci of global change research, namely, land use/land cover (LULC) and climate change. These linkages are examined through modeling agricultural systems, land use driving forces and patterns, the physical properties of land cover, and the regional climate. Both qualitative and quantitative methods are being used to illustrate a diverse pluralism in scientific discovery.  相似文献   

14.
Changes of land cover in the Yarlung Tsangpo River basin from 1985 to 2005   总被引:1,自引:0,他引:1  
Land cover is closely related to environmental changes and socioeconomic development. Land-cover change in the Tibetan Plateau (TP) is different from that in the lowlands; however, a detailed land-cover change in areas such as the Yarlung Tsangpo River (YTR) basin in the TP has not been reported. To fill this gap, the current study explores the land-cover change between 1985 and 2005 in the YTR basin. The results show that only 1 % of the land cover in the YTR basin changed during this time period. The most significant land-cover changes included increases in forest and built-up areas as well as decreases in grassland, water and wetland areas. By percentage, the most rapid land-cover change occurred for built-up areas with an annual variation of 2.07 %. There was an obvious vertical distribution pattern for land-cover types in the YTR basin; from low to high, the average altitudes were forest, farmland, built-up, grassland, water and wetland, and bare land. The average altitude and slope for most land-cover types did not vary over the past 20 years. However, the average altitude and slope of built-up significantly decreased, especially in the zone between 3,500 and 4,000 m. The water and wetland area in altitudes above 4,500 m increased; however, they decreased in the zone between 3,500 and 4,000 m. Natural factors cause most land-cover changes, whereas the increasing intensity of human activities cause some changes to built-up and farmland. Additional attention should be paid to the study of the mechanism of land-cover change in the TP.  相似文献   

15.
北京平原区快速发展的地面沉降对高速铁路的发展构成了威胁,地面沉降与过量开采地下水造成的水位下降关系密切,为此有针对性地开展基于高速铁路的地下水动态与地面沉降相关关系研究对于高铁安全运行意义重大,特别是对于制定高铁沿线地下水开采方案、地面沉降减缓措施和工程措施至关重要。基于其对高速铁路的影响模式,本文将地面沉降分为区域沉降和局部沉降两种类型。针对区域沉降,利用Logistic方程,使用天竺、望京及王四营分层地面沉降和地下水位数据,构建了不同层位地下水水位变化与地面沉降之间的相关关系模型,通过ABAQUS计算局部地区,对于6m高路堤和15m CFG桩处理深度的地基而言,当渗透系数k=2m/d,距离线路边缘25m处浅层地下水下降10m将产生约61—85mm的沉降。  相似文献   

16.
Environment in arid conditions is dynamic and needs more investigation to understand the complexity of change. This spatiotemporal study will help to assess and monitor the land use and land cover change in the arid region of El-Arish area, where the climate and human activities are the major threats to rural development. In the past 11 years, dramatic changes of environment have been recorded in case studies. The post-classification comparison method was used to observe the changes using multi-temporal satellite images which were captured in the years 1999, 2001, 2005, and 2010. The overall accuracy of the produced thematic images was assessed regarding to the quantity and allocation disagreements. Five classes were defined in this investigation: bare soil, vegetation, urban, sand dunes, and fertile soil. From the year 1999 to 2010, fertile soil was increased by 13 %. Bare soil class occupied more than 50 % of land in the case study during for over a decade. From year 1999 to 2010, vegetation cover witnessed a dramatic increase. Soil and water management are the keys of land development and positive land use and land cover dynamics. Changing agricultural policies of using the available water resources are needed in the case study to prevent severe food shortage in the future.  相似文献   

17.
研究大型矿业基地土地利用动态变化过程可间接评估矿产开发对区域生态环境的影响。采用2005年、2010年和2015年3期SPOT-5和GF-2卫星影像数据,通过人工目视解译与计算机自动提取相结合的手段,提取宁东煤炭基地土地利用信息,并收集2000年土地利用遥感解译信息,构建土地利用程度综合指数、动态度等,定量研究宁东煤炭开发引起的土地利用变化,结合经济社会发展指标,构建驱动土地利用变化的定量评价体系,分析了宁东煤炭基地土地利用格局变化的驱动因素。结果表明,2000—2015年宁东煤炭基地一直处于土地持续开发利用阶段,主要表现为草地、林地及耕地向工矿用地为主的建设用地转变,但土地利用程度综合指数的增幅有所下降,表明基地建设逐渐进入稳定期,土地利用压力趋于下降;主成分分析表明,人类活动驱动着宁东土地利用格局的变化,主要有封山禁牧政策、产业化和规模化、人口增长、城镇化等因素。该研究结果可为宁东煤炭基地未来生态环境保护提供科学依据。  相似文献   

18.
在全球变化的背景下,定量区分人类活动和气候波动对干旱区植被的影响具有重要意义。采用多种统计学方法,分析了我国西北干旱区1990-2010年土地利用/覆被变化(LUCC)和1982-2010年归一化植被指数(NDVI)的时空变化特征,并定量评估了LUCC对NDVI变化的影响。结果表明:1990-2010年,西北干旱区耕地增加量最多,高达13 476 km2,其次是林地和水域,各地类增加的面积主要来自草地(12 590 km2)和未利用地(6 025 km2)。各土地类型变化速度快慢依次为:耕地 > 建设用地 > 水域 > 林地 > 草地 > 未利用地。2000-2010年,研究区土地利用程度综合指数(0.79)明显高于1990-2000年(0.23),表明近年来人类活动对土地利用变化的影响程度显著增强。1982-2010年,西北干旱区NDVI呈增加态势,但近年来(2002-2010年)NDVI略有下降。其中,1990-2000年,LUCC对西北干旱区NDVI总变化的贡献率较低,仅为2.9%;而1990-2010,LUCC的贡献率为26.7%,表明气候变化对植被指数变化的贡献率高达73.3%。  相似文献   

19.
The performances of regular support vector machines and random forests are experimentally compared for hyperspectral imaging land cover classification. Special characteristics of hyperspectral imaging dataset present diverse processing problems to be resolved under robust mathematical formalisms such as image classification. As a result, pixel purity index algorithm is used to obtain endmember spectral responses from Indiana pine hyperspectral image dataset. The generalized reduced gradient optimization algorithm is thereafter executed on the research data to estimate fractional abundances in the hyperspectral image and thereby obtain the numeric values for land cover classification. The Waikato environment for knowledge analysis (WEKA) data mining framework is selected as a tool to carry out the classification process by using support vector machines and random forests classifiers. Results show that performance of support vector machines is comparable to that of random forests. This study makes a positive contribution to the problem of land cover classification by exploring generalized reduced gradient method, support vector machines, and random forests to improve producer accuracy and overall classification accuracy. The performance comparison of these classifiers is valuable for a decision maker to consider tradeoffs in method accuracy versus method complexity.  相似文献   

20.
Rapid urban expansion due to large scale land use/cover change, particularly in developing countries becomes a matter of concern since urbanization drives environmental change at multiple scales. Dhaka, the capital of Bangladesh, has been experienced break-neck urban growth in the last few decades that resulted many adverse impacts on the environment. This paper was an attempt to document spatio-temporal pattern of land use/cover changes, and to quantify the landscape structures in Dhaka Metropolitan of Bangladesh. Using multi-temporal remotely sensed data with GIS, dynamics of land use/cover changes was evaluated and a transition matrix was computed to understand the rate and pattern of land use/cover change. Derived land use statistics subsequently integrated with landscape metrics to determine the impact of land use change on landscape fragmentation. Significant changes in land use/cover were noticed in Dhaka over the study period, 1975–2005. Rapid urbanization was manifested by a large reduction of agricultural land since urban built-up area increased from 5,500?ha in 1975 to 20,549?ha in 2005. At the same time, cultivated land decreased from 12,040 to 6,236?ha in the same period. Likewise, wetland and vegetation cover reduced to about 6,027 and 2,812?ha, respectively. Consequently, sharp changes in landscape pattern and composition were observed. The landscape became highly fragmented as a result of rapid increase in the built-up areas. The analysis revealed that mean patch size decreased while the number of patches increased. Landscape diversity declined, urban dominance amplified, and the overall landscape mosaics became more continuous, homogenous and clumped. In order to devise sustainable land use planning and to determine future landscape changes for sound resource management strategies, the present study is expected to have significant implications in rapidly urbanizing cities of the world in delivering baseline information about long term land use change and its impact on landscape structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号