首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
I argue that science stands to benefit from the infrastructure developed to support a human space programme. By infrastructure I mean all those facilities and capabilities which purely scientific budgets could never afford to develop, but which nevertheless act to facilitate scientific research which would not otherwise take place. For example, the human presence on the Moon during the Apollo Project resulted in the acquisition of scientific data which would not have been obtained otherwise, and the same is likely to hold true for future human missions to both the Moon and Mars (and indeed elsewhere). In the more distant future, an important scientific application of a well-developed human spaceflight infrastructure may be the construction of interstellar space probes for the exploration of planets around other nearby stars. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Regardless of the discovery of life on Mars, or of “no apparent life” on Mars, the questions that follow will provide a rich future for biological exploration. Extraordinary pattern recognition skills, decadal assimilation of data and experience, and rapid sample acquisition are just three of the characteristics that make humans the best means we have to explore the biological potential of Mars and other planetary surfaces. I make the case that instead of seeing robots as in conflict, or even in support, of human exploration activity, from the point of view of scientific data gathering and analysis, we should view humans as the most powerful robots we have, thus removing the separation that dogs discussions on the exploration of space. The narrow environmental requirements of humans, although imposing constraints on the life support systems required, is more than compensated for by their capabilities in biological exploration. I support this view with an example of the “Christmas present effect,” a simple demonstration of human data and pattern recognition capabilities.  相似文献   

3.
The Vision for U.S. Space Exploration offers new opportunities for aggressively increasing the pace of scientific discoveries across the Solar System by empowering an on-site partnership between humans and robotics, enhanced by new technology-enabled capabilities. In particular, the early emphasis of this new Vision will be on development of new scientific activities on the Moon, and later on Mars. Integration of in situ traditional science activities with creative new types of applied scientific research on the Moon and Mars is a key ingredient in the US Vision. The Apollo era record of achievement involving human exploration is particularly informative, as it demonstrates the accelerated pace of scientific discovery and understanding that resulted from human “on site” activities, however briefly, on planetary surfaces. An example of how integrated human and robotic exploration can enable breakthrough science on the planet Mars is provided in order to illustrate these points. The scientific opportunities associated with the Vision for US Space Exploration are many, and with the incorporation of human-based capabilities on the Moon and Mars, an accelerated pace of discovery and understanding will be possible.  相似文献   

4.
Studies of the Earth's earliest biosphere have suggested a close coupling between the evolution of early life forms and the physical and chemical evolution of the planetary surface. From a biological perspective there were many similarities between early Earth and early Mars. This has led to the idea that an origin of life event may have occurred on Mars, leading to the development of microbial life. Various theories have been advanced to explain the origin of life on Earth, and these are reviewed with relevance to Mars. If traces of past or present biogenic activity are to be found on Mars, then the most likely place to prospect is several kilometers below the surface where liquid water might be stable. Such prospecting may best lend itself to human exploration. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号