首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyze Chandra observatory images of the field of the X-ray burster KS 1731-260. A factor of 10 to 15 improvement in the localization accuracy (up to ~0.6″) has allowed a possible candidate for counterparts of KS 1731-260 to be determined from infrared sky images (Barret et al. 1998). The possible counterpart (the sky position difference is ~1.46″, i.e., less than 2σ) is a 16th magnitude star in the J band. If this star is actually an infrared counterpart of KS 1731-260, then we can estimate its luminosity and the lower limit on the counterpart total luminosity, L>L J,H ~10L . The sharp decline in the X-ray flux from KS 1731-260 in 2001 offers an additional test of whether the proposed candidate is actually a counterpart of KS 1731-260. If the optical and infrared luminosities of this counterpart are largely attributable to reradiation of the X-ray flux from the neutron star, as is the case in low-mass X-ray binaries, then the brightness of the counterpart star must decrease sharply in 2001, after the X-ray source is turned off.  相似文献   

2.
We analyze the intensity modulation in the final, very broad peak of the main outburst of the neutron star low-mass X-ray binary KS 1731-260. We use ASM/RXTE observations for a time-series analysis of the long-term variations. We also investigate the X-ray color (hardness ratio) changes in the 1.5–12 keV band. The modulation with the mean cycle-length of 37 days is transient and is detected only in several time segments. It underwent significant variations of both the cycle-length and the amplitude. This cycle cannot be caused by transitions of the outer disk region between the hot and cool state that gave rise to the subsequent series of the echo outbursts. Because of its high X-ray luminosity (LX  0.1 of the Eddington luminosity), KS 1731-260 is a promising candidate for having its accretion disk tilted and warped. The properties of the modulation can therefore be explained as due to variable (multimodal), but still detectable superorbital periods caused by a disk precession with mode switching and unstable warps. We find that a variable LX is not the sole parameter that governs the presence of the cycle. Variable absorption of X-rays cannot be dominant in producing the modulation of the ASM flux during the cycle. Variations of the stream impact on the tilted and warped disk, hence affecting the mass flow in the inner disk region, consequently the emission components, are a promising mechanism for the observed cycle. In this scenario, the true cycle-length can be twice as long because of the double-wave profile.  相似文献   

3.
We present the observations of the X-ray burster KS 1731-260 from 1988 until 1999 with the Kvant/TTM telescope supplemented with published data from the ASM and PCA instruments of the RXTE observatory for 1996–2001. We constructed the light curve of the source and confirmed the dependence of spectral variations on its X-ray luminosity.  相似文献   

4.
We describe X-ray and optical observations of the symbiotic star RX Pup. From low resolution optical spectra, we obtain a reddening for RX Pup of E(BV)=0.79. We use the neutral column density corresponding to this reddening as a lower limit for the X-ray spectra fits. The X-ray spectra can be fitted with either a two-temperarure thermal plasma model or a single-temperature plasma plus a narrow line at ≈0.55 keV, each modified by interstellar absorption. The RX Pup X-ray flux is not variable within the observation exposure time, suggesting that unlike in most CVs, an accretion disk boundary layer does not contribute significantly to the X-ray flux. Instead, the X-ray emission may come from shock-heated gas further away from the compact object.  相似文献   

5.
We present a case study of the relevance of the radially pulsational instability of a two-temperature accretion disk around a neutron star to anomalous X-ray pulsars (AXPs). Our estimates are based on the approximation that such a neutron star disk with mass in the range of 10^-6-10^-5M⊙ is formed by supernova fallback. We derive several peculiar properties of the accretion disk instability: a narrow interval of X-ray pulse periods; lower X-ray luminosities; a period derivative and an evolution time scale. All these results are in good agreement with the observations of the AXPs.  相似文献   

6.
本文在中子星磁层与吸积盘之间引入了一个速度、密度、压强和磁场都连续变化的有限厚度的剪切层,以代替Anzer理论中的切向间断面,用磁流体力学方法讨论了中子星磁层与吸积盘交界处等离子体可压缩情况下平面波扰动的K-H不稳定性。结果表明,K-H不稳定性依然存在,径向波矢扰动成为不稳定的主要模式。文中特别讨论了剪切层厚度取值对中子星自转的影响,表明适当调节剪切层厚度就可解释X射线脉冲星周期的变化。将此模型应用到脉冲X射线源Her X-1上,得到较好的结果。  相似文献   

7.
We present computed radiation spectra for the boundary layer (BL) of the accretion disk that is formed near the surface of a neutron star. Both free-free processes and Comptonization were taken into account. Our computations are based on the hydrodynamic solution obtained by Popham and Sunyaev (2001) for the BL structure. The computed spectra are highly diluted compared to the Planck spectra of the same surface temperature. They are complex in shape; in particular, an intense Wien emission component is formed in their high-energy region at high accretion rates. In general, the computed spectra are harder than those observed in actual X-ray sources. This is the result of a very high temperature found by Popham and Sunyaev (2001) for the BL. We show that such temperatures could result from an oversimplified treatment of radiative transfer in their paper, which completely ignored the frequency dependence of the matter opacity and radiation intensity. Our computations indicate that at moderate accretion rates, a proper treatment of radiative transfer with allowance for Comptonization leads to appreciably lower plasma temperatures and to softer radiation spectra.  相似文献   

8.
We show that aperiodic and quasiperiodic variability of bright LMXBs – atoll and Z‐sources – on ∼ sec‐msec time scales is caused primarily by variations of the luminosity of the boundary layer. The emission of the accretion disk is less variable on these time scales and its power density spectrum follows P disk(f ) ∝ f –1 law, contributing to observed flux variation at low frequencies and low energies only. The kHz QPOs have the same origin as variability at lower frequencies, i.e. independent of the nature of the “clock”, the actual luminosity modulation takes place on the neutron star surface. The boundary layer spectrum remains nearly constant in the course of the luminosity variations and is represented to certain accuracy by the Fourier frequency resolved spectrum. In the investigated range of ∼ (0.1 – 1) Edd it depends weakly on the global mass accretion rate and in the limit ∼ Edd is close toWien spectrum with kT ∼ 2.4 keV. Its independence on the global value of lends support to the theoretical suggestion by Inogamov & Sunyaev (1999) that the boundary layer is radiation pressure supported. Based on the knowledge of the boundary layer spectrum we attempt to relate the motion along the Z‐track to changes of physically meaningful parameters. Our results suggest that the contribution of the boundary layer to the observed emission decreases along the Z‐track from conventional ∼50% on the horizontal branch to a rather small number on the normal branch. This decrease can be caused, for example, by obscuration of the boundary layer by the geometrically thickened accretion disk at ∼ Edd. Alternatively, this can indicate significant change of the structure of the accretion flow at ∼ Edd and disappearance of the boundary layer as a distinct region of the significant energy release associated with the neutron star surface. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We present the observations of the pulsar SMC X-1 with the ART-P telescope onboard the Granat observatory. We investigate the variability of the flux from the source on time scales of several tens of days. The intensity variation of the pulsar are shown to be consistent with the presence of a periodicity in the system with a characteristic time scale of ~61 days. The precession of an inclined accretion disk, as indirectly confirmed by the absence of low-state pulsations, may be responsible for the observed variability. The spectrum of the source is well described by a power-law energy dependence of the photon flux density with a slope of ~1.5 and an exponential cutoff at energies above ~14–18 keV. We estimated the inclinations between the planes of the orbit and the accretion disk and the magnetic field of the neutron star.  相似文献   

10.
We present the spectral analysis of the physical state and evolution of the WZSge-type cataclysmic variable GSC02197-00886. The spectra of the system, covering the total orbital period at the time of the outburst on May 8, 2010, at the late relaxation stage, and in the quiescent state, were obtained at the SAO RAS 6-m BTA telescope in 2010–2012. From the absorption and emission HI, He I, and Fe II lines, we have determined the radial velocities for all the nights of observations and constructed the maps of Doppler tomography for the quiescent state. It was found that during the outburst the spectra of the object were formed in an optically thick accretion disk with an effective temperature of T eff ≈ 45 000 K and in a hotter boundary layer. During the relaxation of the system, the accretion disk gradually became optically thinner in the continuum and in the emission lines. In the quiescent state (July 2012), the continuous spectrum was dominated by the radiation of the cooling white dwarf with T eff = 18 000 K. The emission lines are formed on the surface of the cool star by the X-ray irradiation of the 1RXSJ213807.1+261958 source. We propose a method for determining the parameters of the white dwarf, based on the numerical modeling of the system spectra in the quiescent state and their comparison with the observed spectra. It is shown that the effective temperature of white dwarf has decreased by ΔT eff = 6000 K during the relaxation from August 2010 to July 2012. We have obtained a set of parameters for GSC02197-00886 and shown their good agreement with the average parameters of the W Z Sge-type systems, presented in the literature.  相似文献   

11.
The spectra of disc accreting neutron stars generally show complex curvature, and individual components from the disc, boundary layer and neutron star surface cannot be uniquely identified. Here we show that much of the confusion over the spectral form derives from inadequate approximations for Comptonization and for the iron line. There is an intrinsic low-energy cut-off in Comptonized spectra at the seed photon energy. It is very important to model this correctly in neutron star systems as these have expected seed photon temperatures (from either the neutron star surface, inner disc or self-absorbed cyclotron) of ≈1 keV, clearly within the observed X-ray energy band. There is also reflected continuum emission which must accompany the observed iron line, which distorts the higher energy spectrum. We illustrate these points by a reanalysis of the Ginga spectra of Cyg X-2 at all points along its Z track, and show that the spectrum can be well fitted by models in which the low-energy spectrum is dominated by the disc, while the higher energy spectrum is dominated by Comptonized emission from the boundary layer, together with its reflected spectrum from a relativistically smeared, ionized disc.  相似文献   

12.
For accretion on to neutron stars possessing weak surface magnetic fields and substantial rotation rates (corresponding to the secular instability limit), we calculate the disk and surface layer luminosities general relativistically using the Hartle & Thorne formalism, and illustrate these quantities for a set of representative neutron star equations of state. We also discuss the related problem of the angular momentum evolution of such neutron stars and give a quantitative estimate for this accretion driven change in angular momentum. Rotation always increases the disk luminosity and reduces the rate of angular momentum evolution. These effects have relevance for observations of low-mass X-ray binaries.  相似文献   

13.
X-ray binaries     
Summary The various types and classes of X-ray binary are reviewed high-lighting recent results. The high mass X-ray binaries (HMXRBs) can be used to probe the nature of the mass loss from the OB star in these systems. Absorption measurements through one orbital cycle of the supergiant system X1700-37 are well modelled by a radiation driven wind and also require a gas stream trailing behind the X-ray source. In Cen X-3 the gas stream is accreted by the X-ray source via an accretion disk. Changes in the gas stream can cause the disk to thicken and the disk to obscure the X-ray source. How close the supergiant is to corotation seems to be as much a critical factor in these systems as how close it is to filling its Roche lobe. In the Be star X-ray binaries a strong correlation between the neutron stars rotation period and its orbital period has been explained as due to the neutron star being immersed in a dense, slow moving equatorial wind from the Be star. For the X-ray pulsars in the transient Be X-ray binaries a centrifugal barrier to accretion is important in determining the X-ray lightcurve and the spin evolution. The X-ray orbital modulations from the low mass X-ray binaries, LMXRBs, include eclipses by the companion and/or periodic dipping behaviour from structure at the edge of the disk. The corresponding optical modulations show a smooth sinusoidal like component and in some cases a sharp eclipse by the companion. The orbital period of the LMXRB XB1916-05 is 1% longer in the optical compared to that given by the X-ray dip period. The optical period has been interpreted as the orbital period, but this seems inconsistent with the well established view of the origin of the X-ray modulations in LMXRB. A new model is presented that assumes the X-ray dip period is the true orbital period. The 5.2 h eclipsing LMXRB XB2129+47 recently entered a low state and optical observations unexpectedly reveal an F star which is too big to fit into the binary. This is probably the first direct evidence that an X-ray binary is part of a hierarchical triple. Finally the class of X-ray binaries containing black hole candidates is reviewed focusing on the value of using X-ray signatures to identify new candidates.  相似文献   

14.
中子星X射线双星中kHz QPO现象的理论解释   总被引:1,自引:0,他引:1  
罗西X射线时变探测器(RXTE)在中子星小质量X射线双星中发现了千赫兹准周期振荡现象(kHzQPO)。kHzQPO的频率一般在几百到上千赫兹,其动力学时标与吸积盘最内部区域物质的运动时标一致,因此普遍认为kHz QPO产生于中子星表面附近区域,携带了来自中心中子星及周围强引力场信息,如质量、自转周期、角动量、半径、磁场等。kHz QpO现象的理解为研究强引力场和致密物质状态开启了一扇新的窗口。着重介绍基于kHz QPO的基本现象和相应的理论模型。  相似文献   

15.
We present the results of the spectral and timing analysis of the X-ray pulsar LMC X-4 based on data from the NuSTAR observatory in the broad X-ray energy range 3–79 keV. Along with a detailed analysis of the source’s averaged spectrum, high-precision spectra corresponding to different phases of the neutron star spin cycle have been obtained for the first time. The Comptonization model is shown to describe best the source’s spectrum, and the evolution of its parameters as a function of the pulse phase has been traced. For all spectra (the averaged and phase-resolved ones) in the energy range 5–55 keV we have searched for the cyclotron absorption line. The derived upper limit on the optical depth of the cyclotron line τ ~ 0.15 (3σ) points to the absence of this feature in the given energy range, which provides a constraint on the magnetic field of the neutron star: B <3 × 1011 or >6.5 × 1012 G. The latter constraint is consistent with the magnetic field estimate obtained by analyzing the pulsar’s power spectrum, B ? 3 × 1013 G. Based on our analysis of the phase-resolved spectra, we have determined the delay between the emission peaks and the equivalent width of the fluorescent iron line. This delay depends on the orbital phase and is apparently associated with the travel time of photons between the emitting regions in the vicinity of the neutron star and the region where the flux is reflected (presumably in the inflowing stream or at the place of interaction between the stream and the outer edge of the accretion disk).  相似文献   

16.
Results of quasi-simultaneous SWIFT and RTT-150 observations for the X-ray nova SWIFT J174510.8-262411 in May–June 2013 at the decaying phase of its outburst are presented. It is shown that the nova spectrum can be fitted in a very wide energy range (from the infrared z and i bands to hard X-rays) by a single power law attenuated due to absorption but without any traces of the presence of a soft (blackbody) component. The presence of such a component is suggested by the generally accepted models of disk accretion onto a black hole in a binary system. The observation of a single power-law spectrum may imply that synchrotron radiation from the source’s relativistic jets makes a major contribution to its flux or that the accretion disk is everywhere hot, optically thin, and radiates nonthermally.  相似文献   

17.
Spectra of the spreading layers on the neutron star surface are calculated on the basis of the Inogamov–Sunyaev model taking into account general relativity correction to the surface gravity and considering various chemical composition of the accreting matter. Local (at a given latitude) spectra are similar to the X-ray burst spectra and are described by a diluted blackbody. Total spreading layer spectra are integrated accounting for the light bending, gravitational redshift and the relativistic Doppler effect and aberration. They depend slightly on the inclination angle and on the luminosity. These spectra also can be fitted by a diluted blackbody with the colour temperature depending mainly on a neutron star compactness. Owing to the fact that the flux from the spreading layer is close to the critical Eddington, we can put constraints on a neutron star radius without the need to know precisely the emitting region area or the distance to the source. The boundary layer spectra observed in the luminous low-mass X-ray binaries, and described by a blackbody of colour temperature   T c= 2.4 ± 0.1 keV  , restrict the neutron star radii to   R = 14.8 ± 1.5 km  (for a  1.4-M  star and solar composition of the accreting matter), which corresponds to the hard equation of state.  相似文献   

18.
The equations of stationary fluid motion are solved for the case of spherical accretion onto non-magnetic, non-rotating neutron star. The X-ray radiation flux is calculated in two different ways: An approximate solution of the moment equations coupled to the gas fluid equations and numerical Monte-Carlo simulation of the photon random walk. We show that the spectrum of the X-ray radiation in the outer parts of the inflowing envelope has a characteristic power-law behaviour. We suggest that some of the properties of the X-ray sources in the globular clusters can be explained with this model.  相似文献   

19.
Be/X-ray binaries are systems formed by a massive Be star and a magnetized neutron star, usually in an eccentric orbit. The Be star has strong equatorial winds occasionally forming a circumstellar disk. When the neutron star intersects the disk the accretion rate dramatically increases and a transient accretion disk can be formed around the compact object. This disk can last longer than a single orbit in the case of major outbursts. If the disk rotates faster than the neutron star, the Cheng-Ruderman mechanism can produce a current of relativistic protons that would impact onto the disk surface, producing gamma-rays from neutral pion decays and initiating electromagnetic cascades inside the disk. In this paper we present calculations of the evolution of the disk parameters during both major and minor X-ray events, and we discuss the generation of gamma-ray emission at different energies within a variety of models that include both screened and unscreened disks.  相似文献   

20.
The energy spectra of gamma-ray bursts differ from those of black-body radiation and are similar to the thermal bremsstrahlung spectra of optically thin plasma. This could be realized if the source is located in the outer atmosphere of a neutron star. In this case, almost one half of the emitted photons hit the surface of the star. The surface of the star is heated to a temperature of the order 107 K, and a dominant flux of X-rays with a black-body spectrum would be expected. The X-rays produced by this mechanism are detectable in the energy range from a few keV to 10 keV. This model is discussed in relation to the recent observations in the X-ray region at the time of gamma-ray bursts, and modifications of this model are also presented. The observation in this energy range will bring us valuable information on the nature of gamma-ray burst sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号