首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study reveals cross-season connections of rainfall variability in the South China Sea (SCS) region between winter and summer. Rainfall anomalies over northern South China Sea in boreal summer tend to be preceded by the same sign rainfall anomalies over southern South China Sea in boreal winter (denoted as in-phase relation) and succeeded by opposite sign rainfall anomalies over southern South China Sea in the following winter (denoted as out-of-phase relation). Analysis shows that the in-phase relation from winter to summer occurs more often in El Niño/La Niña decaying years and the out-of-phase relation from summer to winter appears more frequently in El Niño/La Niña developing years. In the summer during the El Niño/La Niña decaying years, cold/warm and warm/cold sea surface temperature (SST) anomalies develop in tropical central North Pacific and the North Indian Ocean, respectively, forming an east–west contrast pattern. The in-phase relation is associated with the influence of anomalous heating/cooling over the equatorial central Pacific during the mature phase of El Niño/La Niña events that suppresses/enhances precipitation over southern South China Sea and the impact of the above east–west SST anomaly pattern that reduces/increases precipitation over northern South China Sea during the following summer. The impact of the east–west contrast SST anomaly pattern is confirmed by numerical experiments with specified SST anomalies. In the El Niño/La Niña developing years, regional air-sea interactions induce cold/warm SST anomalies in the equatorial western North Pacific. The out-of-phase relation is associated with a Rossby wave type response to anomalous heating/cooling over the equatorial central Pacific during summer and the combined effect of warm/cold SST anomalies in the equatorial central Pacific and cold/warm SST anomalies in the western North Pacific during the mature phase of El Niño/La Niña events.  相似文献   

2.
Austral summer rainfall over the period 1991/1992 to 2010/2011 was dynamically downscaled by the weather research and forecasting (WRF) model at 9 km resolution for South Africa. Lateral boundary conditions for WRF were provided from the European Centre for medium-range weather (ECMWF) reanalysis (ERA) interim data. The model biases for the rainfall were evaluated over the South Africa as a whole and its nine provinces separately by employing three different convective parameterization schemes, namely the (1) Kain–Fritsch (KF), (2) Betts–Miller–Janjic (BMJ) and (3) Grell–Devenyi ensemble (GDE) schemes. All three schemes have generated positive rainfall biases over South Africa, with the KF scheme producing the largest biases and mean absolute errors. Only the BMJ scheme could reproduce the intensity of rainfall anomalies, and also exhibited the highest correlation with observed interannual summer rainfall variability. In the KF scheme, a significantly high amount of moisture was transported from the tropics into South Africa. The vertical thermodynamic profiles show that the KF scheme has caused low level moisture convergence, due to the highly unstable atmosphere, and hence contributed to the widespread positive biases of rainfall. The negative bias in moisture, along with a stable atmosphere and negative biases of vertical velocity simulated by the GDE scheme resulted in negative rainfall biases, especially over the Limpopo Province. In terms of rain rate, the KF scheme generated the lowest number of low rain rates and the maximum number of moderate to high rain rates associated with more convective unstable environment. KF and GDE schemes overestimated the convective rain and underestimated the stratiform rain. However, the simulated convective and stratiform rain with BMJ scheme is in more agreement with the observations. This study also documents the performance of regional model in downscaling the large scale climate mode such as El Niño Southern Oscillation (ENSO) and subtropical dipole modes. The correlations between the simulated area averaged rainfalls over South Africa and Nino3.4 index were ?0.66, ?0.69 and ?0.49 with KF, BMJ and GDE scheme respectively as compared to the observed correlation of ?0.57. The model could reproduce the observed ENSO-South Africa rainfall relationship and could successfully simulate three wet (dry) years that are associated with La Niña (El Niño) and the BMJ scheme is closest to the observed variability. Also, the model showed good skill in simulating the excess rainfall over South Africa that is associated with positive subtropical Indian Ocean Dipole for the DJF season 2005/2006.  相似文献   

3.
Understanding the SAM influence on the South Pacific ENSO teleconnection   总被引:3,自引:1,他引:2  
The relationship between the El Niño Southern Oscillation (ENSO) and the Southern Hemisphere Annular Mode (SAM) is examined, with the goal of understanding how various strong SAM events modulate the ENSO teleconnection to the South Pacific (45°–70°S, 150°–70°W). The focus is on multi-month, multi-event variations during the last 50 years. A significant (p < 0.10) relationship is observed, most marked during the austral summer and in the 1970s and 1990s. In most cases, the significant relationship is brought about by La Niña (El Niño) events occurring with positive (negative) phases of the SAM more often than expected by chance. The South Pacific teleconnection magnitude is found to be strongly dependent on the SAM phase. Only when ENSO events occur with a weak SAM or when a La Niña (El Niño) occurs with a positive (negative) SAM phase are significant South Pacific teleconnections found. This modulation in the South Pacific ENSO teleconnection is directly tied to the interaction of the anomalous ENSO and SAM transient eddy momentum fluxes. During La Niña/SAM+ and El Niño/SAM? combinations, the anomalous transient momentum fluxes in the Pacific act to reinforce the circulation anomalies in the midlatitudes, altering the circulation in such a way to maintain the ENSO teleconnections. In La Niña/SAM? and El Niño/SAM+ cases, the anomalous transient eddies oppose each other in the midlatitudes, overall acting to reduce the magnitude of the high latitude ENSO teleconnection.  相似文献   

4.
Bolivia is located at the crossroad of the major climatic influences of Northern and Southern-South America, which turns this country into a natural laboratory to investigate the interactions between ocean-climate and fire variability. We chose two oceanic indices: MEI (multivariate ENSO Index) and AMO (Atlantic Multidecadal Oscillation) to select the three most representative years for four oceanic conditions: El Niño, La Niña, AMO, and standard years (understood as years with little ocean influences), for the period 1992–2012. We investigated how i) rainfall (dry vs wet seasons) and ii) fire responded in five Bolivian biomes (Tropical Moist Forests, Tropical Dry Forests, Tropical Grasslands, Tropical Montane, and Seasonally Flooded ecosystems) under these oceanic conditions. Bolivia showed a strong rainfall increase in El Niño years in both seasons (wet/dry), while AMO showed the strongest droughts in both seasons. La Niña showed a bipolar response with rainfall increases in the wet season and a very marked rainfall decrease in the dry season. Drought significantly increased fire numbers in AMO years, being the most significant fire condition and suggesting a larger fire influence of the Atlantic than the Pacific at the national level. Surprisingly, the amount of fire was very large under normal years (STD) and similar to fire levels under La Niña, suggesting generalized fire conditions in the country, except for El Niño years that bring rainfall excess and little fire. The most fire-affected biomes were the seasonally flooded and dry forests, followed by the grassland/savannah biome. Montane areas showed the least fire, but satellite fire omission is well known in the Andean region.  相似文献   

5.
An observational study covering the period 1950–2002 examines a seasonal reversal in the ENSO rainfall signal in the north-central Philippines. In boreal Summer of El Niño (La Niña) events, above (below) average rainfall typically occurs in this area. Rainfall anomalies of opposite sign develop across the country in the subsequent fall. This study investigates the seasonal evolution of the anomalous atmospheric circulation over the western North Pacific (WNP) during both El Niño and La Niña and places these features in the context of the large-scale evolution of ENSO events, including an analysis of changes in tropical cyclone activity affecting the Philippines. The results show that during boreal summer of El Niño (La Niña) events, a relatively narrow, zonally elongated band of enhanced (reduced) low-level westerlies develops across the WNP which serves to increase (decrease) the summer monsoon flow and moisture flux over the north-central Philippines and is associated with an increase (decrease) in the strength of the WNP monsoon trough via the anomalous relative vorticity. Tropical cyclone activity is shown to be enhanced (reduced) in the study region during boreal summer of El Niño (La Niña) events, which is related to the increase (decrease) of mid-level atmospheric moisture, as diagnosed using a genesis potential index. The subsequent evolution shows development of an anomalous anticyclone (cyclone) over the WNP in El Niño (La Niña) and the well-known tendency for below (above) average rainfall in the fall. Prolonged ENSO events also exhibit seasonal rainfall sign reversals in the Philippines with a similar evolution in atmospheric circulation.  相似文献   

6.
A significant fraction of the inter-annual variability in the Nile River flow is shaped by El Niño Southern Oscillation (ENSO). Here, we investigate a similar role for the Indian Ocean (IO) sea surface temperature (SST) in shaping the inter-annual variability of the Nile River flow. Using observations of global SST distribution and river flow in addition to atmospheric general circulation model sensitivity experiments, we show that North and Middle IO SSTs play a significant intermediate role in the teleconnection between ENSO and the Nile flow. Applying partial coherency analyses, we demonstrate that the connection between North and Middle IO SSTs and Nile flow is strongly coupled to ENSO. During El Niño events, SST in the North and Middle IO increases in response to the warming in the Tropical Eastern Pacific Ocean and forces a Gill-type circulation with enhanced westerly low-level flow over East Africa and the Western IO. This anomalous low-level flow enhances the low-level flux of air and moisture away from the Upper Blue Nile (UBN) basin resulting in reduction of rainfall and river flow. SSTs in the South IO also play a significant role in shaping the variability of the Nile flow that is independent from ENSO. A warming over the South IO, generates a cyclonic flow in the boundary layer, which reduces the cross-equatorial meridional transport of air and moisture towards the UBN basin, favoring a reduction in rainfall and river flow. This independence between the roles of ENSO and South IO SSTs allows for development of new combined indices of SSTs to explain the inter-annual variability of the Nile flow. The proposed teleconnections have important implications regarding mechanisms that shape the regional impacts of climate change over the Nile basin.  相似文献   

7.
Winter-spring precipitation in southern China tends to be higher (lower) than normal in El Niño (La Niña) years during 1953–1973. The relationship between the southern China winter-spring precipitation and El Niño-Southern Oscillation (ENSO) is weakened during 1974–1994. During 1953–1973, above-normal southern China rainfall corresponds to warmer sea surface temperature (SST) in the equatorial central Pacific. There are two anomalous vertical circulations with ascent over the equatorial central Pacific and ascent over southern China and a common branch of descent over the western North Pacific that is accompanied by an anomalous lower-level anticyclone. During 1974–1994, above-normal southern China rainfall corresponds to warmer SST in eastern South Indian Ocean and cooler SST in western South Indian Ocean. Two anomalous vertical circulations act to link southern China rainfall and eastern South Indian Ocean SST anomalies, with ascent over eastern South Indian Ocean and southern China and a common branch of descent over the western North Pacific. Present analysis shows that South Indian Ocean SST anomalies can contribute to southern China winter-spring precipitation variability independently. The observed change in the relationship between southern China winter-spring rainfall and ENSO is likely related to the increased SST variability in eastern South Indian Ocean and the modulation of the Pacific decadal oscillation.  相似文献   

8.
The role of tropical Atlantic sea surface temperature (SST) anomalies during ENSO episodes over northeast Brazil (Nordeste) is investigated using the CPTEC/COLA Atmospheric General Circulation Model (AGCM). Four sets of integrations are performed using SST in El Niño and La Niña (ENSO) episodes, changing the SST of the Atlantic Ocean. A positive dipole (SST higher than normal in the tropical North Atlantic and below normal in the tropical South Atlantic) and a negative dipole (opposite conditions), are set as the boundary conditions of SST in the Atlantic Ocean. The four experiments are performed using El Niño or La Niña SST in all oceans, except in the tropical Atlantic where the two phases of the SST dipole are applied. Five initial conditions were integrated in each case in order to obtain four ensemble results. The positive SST dipole over the tropical Atlantic Ocean and El Niño conditions over the Pacific Ocean resulted in dry conditions over the Nordeste. When the negative dipole and El Niño conditions over the Pacific Ocean were applied, the results showed precipitation above normal over the north of Nordeste. When La Niña conditions over Pacific Ocean were tested together with a negative dipole, positive precipitation anomalies occurred over the whole Nordeste. Using the positive dipole over the tropical Atlantic, the precipitation over Nordeste was below average. During La Niña episodes, the Atlantic Ocean conditions have a larger effect on the precipitation of Nordeste than the Pacific Ocean. In El Niño conditions, only the north region of Nordeste is affected by the Atlantic SST. Other tropical areas of South America show a change only in the intensity of anomalies. Central and southeast regions of South America are affected by the Atlantic conditions only during La Niña conditions, whereas during El Niño these regions are influenced only by conditions in the Pacific Ocean.  相似文献   

9.
El Niño–Southern Oscillation (ENSO) events significantly affect the year-by-year variations of the East Asian winter monsoon (EAWM). However, the effect of La Niña events on the EAWM is not a mirror image of that of El Niño events. Although the EAWM becomes generally weaker during El Niño events and stronger during La Niña winters, the enhanced precipitation over the southeastern China and warmer surface air temperature along the East Asian coastline during El Niño years are more significant. These asymmetric effects are caused by the asymmetric longitudinal positions of the western North Pacific (WNP) anticyclone during El Niño events and the WNP cyclone during La Niña events; specifically, the center of the WNP cyclone during La Niña events is westward-shifted relative to its El Niño counterpart. This central-position shift results from the longitudinal shift of remote El Niño and La Niña anomalous heating, and asymmetry in the amplitude of local sea surface temperature anomalies over the WNP. However, such asymmetric effects of ENSO on the EAWM are barely reproduced by the atmospheric models of Phase 5 of the Coupled Model Intercomparison Project (CMIP5), although the spatial patterns of anomalous circulations are reasonably reproduced. The major limitation of the CMIP5 models is an overestimation of the anomalous WNP anticyclone/cyclone, which leads to stronger EAWM rainfall responses. The overestimated latent heat flux anomalies near the South China Sea and the northern WNP might be a key factor behind the overestimated anomalous circulations.  相似文献   

10.

This study involves the modelling of a homogeneous hidden Markov model (HMM) on the northeast rainfall monsoon using 40 rainfall stations in Peninsular Malaysia for the period of 1975 to 2008. A six hidden states HMM was selected based on Bayesian information criterion (BIC), and every hidden state has distinct rainfall characteristics. Three of the states were found to correspond by wet conditions; while the remaining three states were found to correspond to dry conditions. The six hidden states were found to correspond with the associated atmospheric composites. The relationships between El Niño–Southern Oscillation (ENSO) and the sea surface temperatures (SST) in the Pacific Ocean are found regarding interannual variability. The wet (dry) states were found to be well correlated with a Niño 3.4 index which was used to characterize the intensity of an ENSO event. This model is able to assess the behaviour of the rainfall characteristics with the large scale atmospheric circulation; the monsoon rainfall is well correlated with the El Niño–Southern Oscillation in Peninsular Malaysia.

  相似文献   

11.
A significant negative correlation between the total rainfall averaged over South Korea and the Niño-3.4 index was found for the month of September. To find out the reason for this negative correlation, composite analyses were carried out for the highest and lowest 8 years of the Niño-3.4 index. During the strong El Niño year, an anomalous anticyclone occurs in the continental East Asia, while an anomalous cyclone emerges in the subtropical western Pacific. The resultant eastward pressure gradient force induces anomalous northerlies in most regions of East Asia, which produces anomalous cold and dry conditions throughout the troposphere between 120° and 140°E, reducing the Korean rainfall. It is also found that during El Niño year, tropical cyclones (TCs) tend to recurve far east offshore of Japan because the weakening of the western North Pacific subtropical high (WNPSH). During La Niña years, on the other hand, the strengthening and westward extension of the WNPSH render more TCs influencing the Korean peninsula. Therefore, the TC track changes associated with El Niño-Southern Oscillation is another contributor to change of the Korean rainfall.  相似文献   

12.
Chaofan Li  Riyu Lu  Buwen Dong 《Climate Dynamics》2014,43(7-8):1829-1845
Predictability of the western North Pacific (WNP) summer climate associated with different El Niño–Southern Oscillation (ENSO) phases is investigated in this study based on the 1-month lead retrospective forecasts of five state-of-the-art coupled models from ENSEMBLES. During the period from 1960 to 2005, the models well capture the WNP summer climate anomalies during most of years in different ENSO phases except the La Niña decaying summers. In the El Niño developing, El Niño decaying and La Niña developing summers, the prediction skills are high for the WNP summer monsoon index (WNPMI), with the prediction correlation larger than 0.7. The high prediction skills of the lower-tropospheric circulation during these phases are found mainly over the tropical western Pacific Ocean, South China Sea and subtropical WNP. These good predictions correspond well to their close teleconnection with ENSO and the high prediction skills of tropical SSTs. By contrast, for the La Niña decaying summers, the prediction skills are considerably low with the prediction correlation for the WNPMI near to zero and low prediction skills around the Philippines and subtropical WNP. These poor predictions relate to the weak summer anomalies of the WNPMI during the La Niña decaying years and no significant connections between the WNP lower-tropospheric circulation anomalies and the SSTs over the tropical central and eastern Pacific Ocean in observations. However, the models tend to predict an apparent anomalous cyclone over the WNP during the La Niña decaying years, indicating a linearity of the circulation response over WNP in the models prediction in comparison with that during the El Niño decaying years which differs from observations. In addition, the models show considerable capability in describing the WNP summer anomalies during the ENSO neutral summers. These anomalies are related to the positive feedback between the WNP lower-tropospheric circulation and the local SSTs. The models can capture this positive feedback but with some uncertainties from different ensemble members during the ENSO neutral summers.  相似文献   

13.
Information related to rainfall erosivity in the Andes is scarce. This study was carried out to determine the characteristics of rainfall events at the La Encañada watershed, northern Peru, using daily rainfall data from the 1995 to 2000 period that included all the El Niño and Southern Oscillation (ENSO) phases. Three weather stations were installed within the study area, at the top, middle and bottom of the watershed. We analysed the total amount, duration, intensity, kinetic energy and probability of return of rainfall events. In general, 80% of the rainfall events at watershed level had an average rainfall intensity lower than 2.5 mm h?1 and only 4% had an average intensity larger than 7.5 mm h?1. Rainfall erosivity registered at the bottom of the watershed was slightly higher than in the rest of the area. The highest intensities were observed during an El Niño year whereas a La Niña year was characterized by the highest amount of total rainfall compared to the other ENSO phases and by the low intensity rain events. Simulations using the WEPP model estimated higher sediment yield and runoff for the bottom of the watershed during a La Niña year versus El Niño or Neutral years. Even when the analysed rainfall data was too limited to conclude erosion and runoff during any ENSO phase, the simulated results showed us the trend of the behaviour of rainfall erosivity under the ENSO phases at different locations.  相似文献   

14.
Summer Sahel-ENSO teleconnection and decadal time scale SST variations   总被引:5,自引:0,他引:5  
The correlation between Sahel rainfall and El Niño–Southern Oscillation (ENSO) in the northern summer has been varying for the last fifty years. We propose that the existence of periods of weak or strong relationship could result from an interaction with the global decadal scale sea surface temperature (SST) background. The main modes of SST variability have been extracted through a principal component analysis with Varimax rotation. The correlations between a July-September Sahel rainfall index and these SST modes have been computed on a 20-year running window between 1945 and 1993. The correlations with the interannual ENSO-SST mode are negative, not significant in the 1960s during the transition period from the wet climate phasis to the long-running drought in the Sahel, but then were significant since 1976. During the former period, the correlations between the Sahel rainfall index and the other SST modes (expressing mostly on quasi and multi-decadal scales) are the highest, in particular correlations with the tropical Atlantic “dipole”. Correlations between Sahel and Guinea Coast rainfall are also significantly negative. After 1970, the Sahel-Guinea Coast rainfall correlations are no longer significant, and the ENSO-SST mode becomes the only one significantly correlated with Sahel rainfall, especially due to the impact of warm events. The partial correlations between the ENSO-SST mode and the Sahel rainfall index, when the influence of the other SST modes are eliminated, are significant over all the 20-year running periods between 1945 and 1993, suggesting that this summer teleconnection could be modulated by the decadal scale SST background. The NCEP/NCAR reanalyses reproduce accurately the interannual variability of the atmospheric circulation after 1968. In particular a regional West African Monsoon Index (WAMI), combining wind speed anomalies at 925 and 200?hPa, is highly correlated with the July-September Sahel rainfall index. A warm ENSO event is associated both with an eastward mean sea level pressure gradient between the eastern tropical Pacific and the tropical Atlantic and with a northward pressure gradient along the western coast of West Africa. This pattern leads to enhanced trade winds over the tropical Atlantic and to weaker moisture advection over West Africa, consistent with a weaker monsoon system strength and a weaker Southern Hemisphere Hadley circulation. The NCEP/NCAR reanalyses do not reproduce accurately the decadal variability of the atmospheric circulation over West Africa because of artifical biases. Therefore the impact of the decadal scale pattern of the atmospheric circulation has been investigated with atmospheric general circulation model (AGCM) sensitivity experiments, by forcing the ARPEGE-Climat model with different combinations of an El Niño-like SST pattern with the pattern of the main mode of decadal scale SST variability where the hightest weights are located in the Pacific and Indian basins. AGCM outputs show that the decadal scale SST variations weakly affect Sahel rainfall variability but that they do induce an indirect effect on Sahel rainfall by enhancing the impact of the warm ENSO phases after 1980, through an increase in the fill-in of the monsoon trough and a moisture advection deficit over West Africa.  相似文献   

15.
Zhuoqi He  Renguang Wu 《Climate Dynamics》2014,42(9-10):2323-2337
This study investigates summer rainfall variability in the South China Sea (SCS) region and the roles of remote sea surface temperature (SST) forcing in the tropical Indian and Pacific Ocean regions. The SCS summer rainfall displays a positive and negative relationship with simultaneous SST in the equatorial central Pacific (ECP) and the North Indian Ocean (NIO), respectively. Positive ECP SST anomalies induce an anomalous low-level cyclone over the SCS-western North Pacific as a Rossby-wave type response, leading to above-normal precipitation over northern SCS. Negative NIO SST anomalies contribute to anomalous cyclonic winds over the western North Pacific by an anomalous east–west vertical circulation north of the equator, favoring more rainfall over northern SCS. These NIO SST anomalies are closely related to preceding La Niña and El Niño events through the “atmospheric bridge”. Thus, the NIO SST anomalies serve as a medium for an indirect impact of preceding ECP SST anomalies on the SCS summer rainfall variability. The ECP SST influence is identified to be dominant after 1990 and the NIO SST impact is relatively more important during 1980s. These Indo-Pacific SST effects are further investigated by conducting numerical experiments with an atmospheric general circulation model. The consistency between the numerical experiments and the observations enhances the credibility of the Indo-Pacific SST influence on the SCS summer rainfall variability.  相似文献   

16.
A principal component decomposition of monthly sea surface temperature (SST) variability in the tropical Pacific Ocean demonstrates that nearly all of the linear trends during 1950–2010 are found in two leading patterns. The first SST pattern is strongly related to the canonical El Niño-Southern Oscillation (ENSO) pattern. The second pattern shares characteristics with the first pattern and its existence solely depends on the presence of linear trends across the tropical Pacific Ocean. The decomposition also uncovers a third pattern, often referred to as ENSO Modoki, but the linear trend is small and dataset dependent over the full 61-year record and is insignificant within each season. ENSO Modoki is also reflected in the equatorial zonal SST gradient between the Niño-4 region, located in the west-central Pacific, and the Niño-3 region in the eastern Pacific. It is only in this zonal SST gradient that a marginally significant trend arises early in the Northern Hemisphere spring (March–May) during El Niño and La Niña and also in the late summer (July–September) during El Niño. Yet these SST trends in the zonal gradient do not unequivocally represent an ENSO Modoki-like dipole because they are exclusively associated with significant positive SST trends in either the eastern or western Pacific, with no corresponding significant negative trends. Insignificant trends in the zonal SST gradient are evident during the boreal wintertime months when ENSO events typically mature. Given the presence of positive SST trends across much of the equatorial Pacific Ocean, using fixed SST anomaly thresholds to define ENSO events likely needs to be reconsidered.  相似文献   

17.
This study compares the impacts of interannual Arctic sea ice loss and ENSO events on winter haze days in mainland China through observational analyses and AGCM sensitivity experiments. The results suggest that (1) Arctic sea ice loss favors an increase in haze days in central–eastern China; (2) the impact of ENSO is overall contained within southern China, with increased (reduced) haze days during La Niña (El Niño) winters; and (3) the impacts from sea ice loss and ENSO are linearly additive. Mechanistically, Arctic sea ice loss causes quasi-barotropic positive height anomalies over the region from northern Europe to the Ural Mountains (Urals in brief) and weak and negative height anomalies over the region from central Asia to northeastern Asia. The former favors intensified frequency of the blocking over the regions from northern Europe to the Urals, whereas the latter favors an even air pressure distribution over Siberia, Mongolia, and East Asia. This large-scale circulation pattern favors more frequent occurrence of calm and steady weather in northern China and, as a consequence, increased occurrence of haze days. In comparison, La Niña (El Niño) exerts its influence along a tropical pathway by inducing a cyclonic (anticyclonic) lower-tropospheric atmospheric circulation response over the subtropical northwestern Pacific. The northeasterly (southwesterly) anomaly at the northwestern rear of the cyclone (anticyclone) causes reduced (intensified) rainfall over southeastern China, which favors increased (reduced) occurrence of haze days through the rain-washing effect.  相似文献   

18.
A high-resolution (T213) coupled ocean–atmosphere general circulation model (CGCM) has been used to examine the relationship between El Niño/Southern Oscillation (ENSO) and tropical cyclone (TC) activity over the western North Pacific (WNP). The model simulates ENSO-like events similar to those observed, though the amplitude of the simulated Niño34 sea surface temperature (SST) anomaly is twice as large as observed. In El Niño (La Niña) years, the annual number of model TCs in the southeast quadrant of the WNP increases (decreases), while it decreases (increases) in the northwest quadrant. In spite of the significant difference in the mean genesis location of model TCs between El Niño and La Niña years, however, there is no significant simultaneous correlation between the annual number of model TCs over the entire WNP and model Niño34 SST anomalies. The annual number of model TCs, however, tends to decrease in the years following El Niño, relating to the development of anticyclonic circulation around the Philippine Sea in response to the SST anomalies in the central and eastern equatorial Pacific. Furthermore, it seems that the number of model TCs tends to increase in the years before El Niño. It is also shown that the number of TCs moving into the East Asia is fewer in October of El Niño years than La Niña years, related to the anomalous southward shift of mid-latitude westerlies, though no impact of ENSO on TC tracks is found in other months. It is found that model TCs have longer lifetimes due to the southeastward shift of mean TC genesis location in El Niño years than in La Niña years. As the result of longer fetch of TCs over warm SST, model TCs appear to be more intense in El Niño years. These relationships between ENSO and TC activity in the WNP are in good agreement with observational evidence, suggesting that a finer-resolution CGCM may become a powerful tool for understanding interannual variability of TC activity.  相似文献   

19.
Interannual variability over South America (SA) is mainly controlled by the El Niño-Southern Oscillation (ENSO) phenomenon. This study investigates the ENSO precipitation signal during austral spring (September–October–November-SON) over SA. Three global circulation models-GCMs-(MPI, GFDL and HadGEM2) are used for RegCM4 (Regional Climate Model version 4) downscaling of the present (1975–2005) near-future (2020–2050) and far-future (2070–2098) climates using two greenhouse gas stabilization scenarios (RCP4.5 and RCP8.5). For the present climate, only HadGEM2 simulates a frequency of El Niño (EN) and La Niña (LN) years similar to the observations. In terms of ENSO frequency changes, only in the far-future RCP8.5 climate there is greater agreement among GCMs, indicating an increase (decrease) of EN (LN) years. In the present climate, validation indicates that only the RegCM4 ensemble mean provides acceptable precipitation biases (smaller than ±20 %) in the two investigated regions. In this period, the GCMs and RegCM4 agree on the relationship between ENSO and precipitation in SA, i.e., both are able to capture the observed regions of positive/negative rainfall anomalies during EN years, with RegCM4 improving on the GCMs’ signal over southeastern SA. For the near and far future climates, in general, the projections indicate an increase (decrease) of precipitation over southeastern SA (northern-northeastern SA). However, the relationship between ENSO and rainfall in most of RegCM4 and GCM members is weaker in the near and far future climates than in the present day climate. This is likely connected with the GCMs’ projection of the more intense ENSO signal displaced to the central basin of Pacific Ocean in the far future compared to present climate.  相似文献   

20.
The variability of the East Asian winter monsoon (EAWM) can be divided into an ENSO-related part (EAWMEN) and an ENSO-unrelated part (EAWMres).The influence of EAWMres on the ENSO-East Asian summer monsoon (EASM) relationship in the decaying stages of ENSO is investigated in the present study.To achieve this,ENSO is divided into four groups based on the EAWMres:(1) weak EAWMres-E1Ni(n)o (WEAWMres-EN); (2) strong EAWMres-E1Ni(n)o (SEAWMresEN); (3) weak EAWMres-La Ni(n)a (WEAWMres-LN); (4) strong EAWMres-La Ni(n)a (SEAWMres-LN).Composite results demonstrate that the EAWMres may enhance the atmospheric responses over East Asia to ENSO for WEAWMres-EN and SEAWMres-LN.The corresponding low-level anticyclonic (cyclonic) anomalies over the western North Pacific (WNP) associated with El Ni(n)o (La Ni(n)a) tend to be strong.Importantly,this feature may persist into the following summer,causing abundant rainfall in northern China for WEAWMres-EN cases and in southwestern China for SEAWMres-LN cases.In contrast,for the SEAWMres-EN and WEAWMres-LN groups,the EAWMres tends to weaken the atmospheric circulation anomalies associated with E1 Ni(n)o or La Ni(n)a.In these cases,the anomalous WNP anticyclone or cyclone tend to be reduced and confined to lower latitudes,which results in deficient summer rainfall in northern China for SEAWMres-EN and in southwestern China for WEAWMres-LN.Further study suggests that anomalous EAWMres may have an effect on the extra-tropical sea surface temperature anomaly,which persists into the ensuing summer and may interfere with the influences of ENSO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号