首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of alkoxy radicals determine to a large extent the products formed during the atmospheric degradations of emitted organic compounds. Experimental data concerning the decompositions, 1,5-H shift isomerizations and reactions with O2 of several classes of alkoxy radicals are inconsistent with literature estimations of their absolute or relative rate constants. An alternative, although empirical, method for assessing the relative importance under atmospheric conditions of the reactions of alkoxy radicals with O2 versus decomposition was derived. This estimation method utilizes the differences in the heats of reaction, (H)=(Hdecomposition–HO 2 reaction), between these two reactions pathways. For (H)[22–0.5(HO 2 reaction)], alkoxy radical decomposition dominates over the reaction with O2 at room temperature and atmospheric pressure of air, while for (H)[25-0.5(HO 2 reaction)], the O2 reaction dominates over decomposition (where the units of H are in kcal mol–1). The utility and shortcomings of this approach are discussed. It is concluded that further studies concerning the reactions of alkoxy radicals are needed.  相似文献   

2.
The stability of the climate-vegetation system in the northern high latitudesis analysed with three climate system models of different complexity: A comprehensive 3-dimensional model of the climate system, GENESIS-IBIS, and two Earth system models of intermediate complexity (EMICs), CLIMBER-2 andMoBidiC. The biogeophysical feedback in the latitudinal belt 60–70° N, although positive, is not strong enough to support multiple steady states: A unique equilibriumin the climate-vegetation system is simulated by all the models on a zonal scale for present-day climate and doubled CO2 climate.EMIC simulations with decreased insolation also reveal a unique steady state. However, the climate sensitivity to tree cover, TF, exhibits non-linear behaviour within the models. For GENESIS-IBIS and CLIMBER-2, TF islower for doubled CO2 climate than for present-day climate due to a shorter snow season and increased relative significance ofthe hydrological effect of forest cover. For the EMICs, TF is higher for low tree fraction than for high treefraction, mainly due to a time shift in spring snow melt in response to changes in tree cover. The climate sensitivity to tree coveris reduced when thermohaline circulation feedbacks are accounted for in the EMIC simulations. Simpler parameterizations of oceanic processes have opposite effects on TF: TF is lower in simulations with fixed SSTs and higher in simulations with mixed layer oceans. Experiments with transient CO2 forcing show climate and vegetation not in equilibrium in the northern high latitudes at the end of the 20thcentury. The delayed response of vegetation and accelerated global warming lead to rather abrupt changes in northern vegetation cover in the first halfof the 21st century, when vegetation cover changes at double the present day rate.  相似文献   

3.
FOS/DECAFE 91 (Fire of Savannas/Dynamique et Chimie Atmosphérique en Forêt Equatoriale) was the first multidisciplinary experiment organized in Africa to determine gas and aerosol emissions by prescribed savanna fires. The humid savanna of Lamto in Ivory Coast was chosen for its ecological characteristics representative of savannas with a high biomass density (900 g m–2 dry matter). Moreover the vegetation and the climate of Lamto have been studied for more than twenty years. The emission ratios (X/CO2) of the carbon compounds (CO2, CO, NMHC, CH4, PAH, organic acids and aerosols), nitrogen compounds (NOx, N2O, NH3 and soluble aerosols) and sulfur compounds (SO2, COS and aerosols) were experimentally determined by ground and aircraft measurements. To perform this experiment, 4 small plots (100×100 m) and 2 large areas (10×10 km) were prepared and burnt in January 1991 during the period of maximum occurrence of fires in this type of savanna. The detailed ecological study shows that the carbon content of the vegetation is constant within 1% (42 g C for 100 g of vegetal dry matter), the nitrogen content (0.29 g N for 100 g of dry matter) may vary by 10% and the sulfur content (0.05 g S/100 d.m.) by 20%. These variations of the biomass chemical content do not constitute an important factor in the variation of the gas and particle emission levels. With the emission ratios characteristic of humid savanna and flaming conditions (CO/CO2 of 6.1% at the ground and 8% for airborne measurements), we propose a set of new emission factors, taking into account the burning efficiency which is about 80%: 74.4% of the carbon content of the savanna biomass is released to the atmosphere in the form of CO2, 4.6% as CO, 0.2% as CH4, 0.5% as NMHC and 0.7% as aerosols. 17.2% of the nitrogen content of the biomass is released as NOx, 3.5% as N2O, 0.6% as NH3 and 0.5% as soluble aerosols.  相似文献   

4.
Carbonyl sulfide emissions from biomass burning have been studied during field experiments conducted both in an African savanna area (Ivory Coast) and rice fields, central highland pine forest and savanna areas in Viet-Nam. During these experiments CO2, CO and C2H2 or CH4 have also been also monitored. COS values range from 0.6 ppbv outside the fires to 73 ppbv in the plumes. Significant correlations have been observed between concentrations of COS and CO (R 2=0.92,n=25) and COS and C2H2 (R 2=0.79,n=26) indicating a COS production during the smoldering combustion. COS/CO2 emission factors (COS/CO2) during field experiments ranged from 1.2 to 61×10–6 (11.4×10–6 mean value). COS emission by biomass burning was estimated to be up to 0.05 Tg S/yr in tropics and up to 0.07 Tg S/yr on a global basis, contributing thus about 10% to the global COS flux. Based on the S/C ratio measured in the dry plant biomass and the COS/CO2 emission factor, COS can account for only about 7% of the sulfur emitted in the atmosphere by biomass burning.  相似文献   

5.
Flux densities of carbon dioxide were measured over an arid, vegetation-free surface by eddy covariance techniques and by a heat budget-profile method, in which CO2 concentration gradients were specified in terms of mixing ratios. This method showed negligible fluxes of CO2, consistent with the bareness of the experimental site, whereas the eddy covariance measurements indicated large downward fluxes of CO2. These apparently conflicting observations are in quantitative agreement with the results of a recent theory which predicts that whenever there are vertical fluxes of sensible or latent heat, a mean vertical velocity is developed. This velocity causes a mean vertical convective mass flux (= cw for CO2, in standard notation). The eddy covariance technique neglects this mean convective flux and measures only the turbulent flux c w. Thus, when the net flux of CO2 is zero, the eddy covariance method indicates an apparent flux which is equal and opposite to the mean convective flux, i.e., c w = – c w. Corrections for the mean convective flux are particularly significant for CO2 because cw and c w are often of similar magnitude. The correct measurement of the net CO2 flux by eddy covariance techniques requires that the fluxes of sensible and latent heat be measured as well.  相似文献   

6.
We formulate a method for determining the smallest time interval Tover which a turbulence time series can be averaged to decompose it intoinstantaneous mean and random components. From the random part the method defines the optimal interval (or averaging window) AW over which this part should be averaged to obtain the instantaneous spectrum. Both T and AW vary randomly with time and depend on physical properties of the turbulence. T also depends on the accuracy of the measurements and is thus independent of AW. Interesting features of the method are its real-time capability and the non-equality between AW and T.  相似文献   

7.
Increasing reliance on natural gas (methane) to meet global energy demands holds implications for atmospheric CO2 concentrations. Analysis of these implications is presented, based on a logistic substitution model viewing energy technologies like biological species invading an econiche and substituting in case of superiority for existing species. This model suggests gas will become the dominant energy source and remain so for 50 years, peaking near 70 percent of world supply. Two scenarios of energy demand are explored, one holding per capita consumption at current levels, the second raising the global average in the year 2100 to the current U.S. level. In the first (efficiency) scenario concentrations peak about 450 ppm, while in the second (long wave) they near 600 ppm. Although projected CO2 concentrations in a methane economy are low in relation to other scenarios, the projections confirm that global climate warming is likely to be a major planetary concern throughout the twenty-first century. A second finding is that data on past growth of world per capita energy consumption group neatly into two pulses consistent with longwave theories in economics.  相似文献   

8.
Zusammenfassung Eine endliche Reihe (Sequenz) wird als eine der möglichen Permutationen ihrer Glieder aufgefaßt. Es wird gezeigt, daß die Summe der absoluten Differenzen der aufeinanderfolgenden Glieder gleich ist , wo die natürliche Zahlen sind und nur von der Rangordnung der Glieder der Reihe (von der Permutation) abhängen; die j sind von der Reihenfolge unabhängig und werden durch die Dispersion der Reihenglieder bestimmt. Die j und die j werden separat untersucht; der Erwartungswert der erwähnten Differenzsumme wird abgeleitet. Verschiedene bereits bekannte und auch erstmalig hier vorgeschlagene Maßzahlen werden geprüft. An Reihen jährlicher Regenmengen wird die Rolle der j und der j und das Verhalten der besprochenen Maßzahlen veranschaulicht.
Summary A series ofn members can be considered as one of the possible permutations of its members. It is shown that the sum of the linear successive differences is equal to the expression , where the j are positive integers, dependent only upon the rank-order (the permutation) of the members, while the j are independent of the order of the succession and are determined by the dispersion of the members of the series. The factors j and j are separately investigated; the expected value of the sum of the linear successive differences is established. Various related statistical measures, already in usage and new ones suggested here, are discussed. Series of yearly rainfall amounts are used to show the effects of the j and j and to discuss the behaviour of the various measures.

Résumé Une série, constituée parn valeurs, est regardée comme une des possibles permutations de ces valeurs. L'auteur montre que la somme des différences absolues, qui se présentent entre les valeurs consécutives de la série, est égale à l'expression . Les j sont des nombres entiers positifs et ne dépendent que de l'ordre des membres de la série, tandis que les j, indépendants de l'ordre, sont déterminés par la dispersion des membres. Les facteurs j et j sont étudiés séparément; l'espérance mathématique de la somme mentionnée est dérivée. Des paramètres statistiques déjà connus ou proposés ici pour la première fois, sont discutés. Le rôle des j et des j et le comportement des divers paramètres sont montrés à l'aide de séries de totaux annuels de pluies.
  相似文献   

9.
Summary During an expedition to the high Andes of Southern Peru in June–July 1977, measurements of direct solar radiation in four spectral bands (0.270–0.530–0.630–0.695–2.900 ) were conducted at six sites in elevations ranging from sea level to 5645 m. These measurements were evaluated in Langley plots to determine total optical depths () and irradiances at the top of the atmosphere. In addition, water vapor optical depths (wv) were calculated from the mean radiosounding over Lima during the expedition, and Rayleigh (ray) and ozone (oz) optical depths were obtained from published tabulations. Subtracting ray, oz, and wv from yielded estimates of aerosol optical depth aer. The components ray and oz decrease from the shorter towards the longer wavelength bands and from the lower towards the higher elevation sites; aer also decreases towards the higher elevations. Particularly pronounced is the decrease of aer and from the lowlands of the Pacific coast to the highlands of the interior, reflecting the effect of a persistent lower-tropospheric inversion and the contrast from the marine boundary layer to the clear atmosphere of the high Andes.With 4 Figures  相似文献   

10.
Particulate content of savanna fire emissions   总被引:9,自引:0,他引:9  
As part of the FOS-DECAFE experiment at Lamto (Ivory Coast) in January 1991, various aerosol samples were collected at ground level near prescribed fires or under local background conditions, to characterize the emissions of particulate matter from the burning of savanna vegetation. This paper deals with total aerosol (TPM) and carbon measurements. Detailed trace element and polycyclic hydrocarbon data are discussed in other papers presented in this issue.Near the fire plumes, the aerosols from biomass burning are primarily of a carbonaceous nature (C%70% of the aerosol mass) and consist predominantly of submicron particles (more than 90% in mass.) They are characterized by their organic nature (black to total carbon ratio Cb/Ct in the range 3–20%) and their high potassium content (K/Cb0.6). These aerosols undergo aging during their first minutes in the atmosphere causing slight alterations in their size distribution and chemical composition. However, they remain enriched in potassium (K/Cb=0.21) and pyrene, a polycyclic aromatic hydrocarbon, such that both of these species may be used as tracers of savanna burning aerosols. We show that during this period of the year, the background atmosphere experiences severe pollution from both terrigenous sources and regional biomass burning (44% of the aerosol). Daynight variations of the background carbon concentrations suggest that fire ignition and spreading occur primarily during the day. Simultaneous TPM and CO2 real-time measurements point to a temporal and spatial heterogeneity of the burning so that the ratio of the above background concentrations (TPM/CO2) varies from 2 to 400 g/kg C. Smoldering processes are intense sources of particles but particulate emissions may also be important during the rapidly spreading heading fires in connection with the generation of heavy brown smoke. We propose emission factor values (EF) for aerosols from the savanna biomass burning aerosols: EF (TPM)=11.4±4.6 and 69±25 g/kg Cdry plant and EF(Ct)=7.4±3.4 and 56±16 g C/kg Cdry plant for flaming and smoldering processes respectively. In these estimates, the range of uncertainty is mostly due to the intra-fire variability. These values are significantly lower than those reported in the literature for the combustion of other types of vegetation. But due to the large amounts of vegetation biomass being burnt in African savannas, the annual flux of particulate carbon into the atmosphere is estimated to be of the order of 8 Tg C, which rivals particulate carbon emissions from anthropogenic activities in temperate regions.  相似文献   

11.
Cloud water and interstitial aerosol samples collected at Mt. Sonnblick (SBO) were analyzed for sulfate and aerosol carbon to calculate in-cloud scavenging efficiencies. Scavenging efficiencies for sulfate (SO) ranged from 0.52 to 0.99 with an average of 0.80. Aerosol carbon was scavenged less efficiently with an average value (AC) of 0.45 and minimum and maximum values of 0.14 and 0.81, respectively. Both SO and AC showed a marked, but slightly different, dependence on the liquid water content (LWC) of the cloud. At low LWC, SO increased with rising LWC until it reached a relatively constant value of 0.83 above an LWC of 0.3 g/m3. In the case of aerosol carbon, we obtained a more gradual increase of AC up to an LWC of 0.5 g/m3. At higher LWCs, _ remained relatively constant at 0.60. As the differences between SO and A varied across the LWC range observed at SBO, we assume that part of the aerosol carbon was incorporated into the cloud droplets independently from sulfate. This hypothesis is supported by size classified aerosol measurements. The differences in the size distributions of sulfate and total carbon point to a partially external mixture. Thus, the different chemical nature and the differences in the size and mixing state of the aerosol particles are the most likely candidates for the differences in the scavenging behavior.  相似文献   

12.
Tropospheric photodissociation rate coefficients (J values) were calculated for NO2, O3, HNO2, CH2O, and CH3CHO using high spectral resolution (0.1 mm wavelength increments), and compared to the J values obtained with numerically degraded resolution (=1, 2, 4, 6, 8, and 10 nm, and several commonly used nonuniform grids). Depending on the molecule, substantial errors can be introduced by the larger increments. Thus for =10 nm, errors are less than 1% for NO2, less than 2% for HNO2, +6.5% to -16% for CH2O, -6.9% to +24% for CH3CHO, and -24% to +110% for O3. The errors for CH2O arise from the fine structure of its absorption spectrum, and are prevalently negative (underestimate of J). The errors for O3, and to a lesser extent for CH3CHO, arise mainly from under-resolving the overlap of the molecular action spectrum and the tropospheric actinic flux in the wavelength region of stratospheric ozone attenuation. The sign of those errors depends on whether the actinic flux is averaged onto the grid before or after the radiative transfer calculation. In all cases studied, grids with 2 nm produced errors no larger than 5%.  相似文献   

13.
The commonly reported temperature coefficient of P. the equilibrium partial pressure of CO2, is (P/T) A,C ,which is about 15 ppm/°C, or 5% of the atmospheric partial pressure of CO2. This coefficient, however, applies only to deep water, not to surface water which can exchange CO2 with the atmosphere. The coefficient (P/T) A,C ,, where designates constancy of the sum of atmospheric and surface-ocean CO2, is the appropriate value for air-sea exchange. Numerical values are mass-dependent because the depth of the exchanging ocean layer must be specified. For a 100-m surface layer, the value is ca. 1.5 ppm/°C, or 0.5% of ambient CO2. Editor's Note:In view of the interdisciplinary importance of the carbon dioxide-climate problem, this note on seawater chemistry should be of interest to specialists beyond the discipline of ocean chemistry.  相似文献   

14.
The effect of changes in zonal and meridional atmospheric moisture transports on Atlantic overturning is investigated. Zonal transports are considered in terms of net moisture export from the Atlantic sector. Meridional transports are related to the vigour of the global hydrological cycle. The equilibrium thermohaline circulation (THC) simulated with an efficient climate model is strongly dependent on two key parameters that control these transports: an anomaly in the specified Atlantic–Pacific moisture flux (Fa) and atmospheric moisture diffusivity (Kq). In a large ensemble of spinup experiments, the values of Fa and Kq are varied by small increments across wide ranges, to identify sharp transitions of equilibrium THC strength in a 2-parameter space (between Conveyor On and Off states). Final states from this ensemble of simulations are then used as the initial states for further such ensembles. Large differences in THC strength between ensembles, for identical combinations of Fa and Kq, reveal the co-existence of two stable THC states (Conveyor On and Off)—i.e. a bistable regime. In further sensitivity experiments, the model is forced with small, temporary freshwater perturbations to the mid-latitude North Atlantic, to establish the minimum perturbation necessary for irreversible THC collapse in this bistable regime. A threshold is identified in terms of the forcing duration required. The model THC, in a Conveyor On state, irreversibly collapses to a Conveyor Off state under additional freshwater forcing of just 0.1 Sv applied for around 100 years. The irreversible collapse is primarily due to a positive feedback associated with suppressed convection and reduced surface heat loss in the sinking region. Increased atmosphere-to-ocean freshwater flux, under a collapsed Conveyor, plays a secondary role.  相似文献   

15.
The surface energy fluxes simulated by the CSIRO9 Mark 1 GCM for present and doubled CO2 conditions are analyzed. On the global scale the climatological flux fields are similar to those from four GCMs studied previously. A diagnostic calculation is used to provide estimates of the radiative forcing by the GCM atmosphere. For 1 × CO2, in the global and annual mean, cloud produces a net cooling at the surface of 31 W m–2. The clear-sky longwave surface greenhouse effect is 311 W m–2, while the corresponding shortwave term is –79 W m–2. As for the other GCM results, the CSIRO9 CO2 surface warming (global mean 4.8°C) is closely related to the increased downward longwave radiation (LW ). Global mean net cloud forcing changes little. The contrast in warming between land and ocean, largely due to the increase in evaporative cooling (E) over ocean, is highlighted. In order to further the understanding of influences on the fluxes, simple physically based linear models are developed using multiple regression. Applied to both 1 × CO2 and CO2 December–February mean tropical fields from CSIRO9, the linear models quite accurately (3–5 W m–2 for 1 × CO2 and 2–3 W m–2 for CO2) relate LW and net shortwave radiation to temperature, surface albedo, the water vapor column, and cloud. The linear models provide alternative estimates of radiative forcing terms to those from the diagnostic calculation. Tropical mean cloud forcings are compared. Over land, E is well correlated with soil moisture, and sensible heat with air-surface temperature difference. However an attempt to relate the spatial variation of LWt within the tropics to that of the nonflux fields had little success. Regional changes in surface temperature are not linearly related to, for instance, changes in cloud or soil moisture.  相似文献   

16.
Ralf Greve 《Climatic change》2000,46(3):289-303
Numerical computations are performed with the three-dimensional polythermal ice-sheet model SICOPOLIS in order to investigate the possible impact of a greenhouse-gas-induced climate change on the Greenland ice sheet. The assumed increase of the mean annual air temperature above the ice covers a range from T = 1°C to 12°C, and several parameterizations for the snowfall and the surface melting are considered. The simulated shrinking of the ice sheet is a smooth function of the temperature rise, indications for the existence of critical thresholds of the climate input are not found. Within 1000 model years, the ice-volume decrease is limited to 10% of the present volume for T 3°C, whereas the most extreme scenario, T = 12°C, leads to an almost entire disintegration, which corresponds to a sea-level equivalent of 7 m. The different snowfall and melting parameterizations yield an uncertainty range of up to 20% of the present ice volume after 1000 model years.  相似文献   

17.
A previously published technique for using tethered spherical balloons as anemometers for measuring light low-level winds has been further developed. Earlier data on the relationship between the aerodynamic drag coefficient and the Reynolds number of spherical rubber balloons were combined with a large number of new data and re-analysed; and the errors in the relationship were estimated. The results allowed a more accurate calculation of wind speed from the deflection of a tethered balloon from the vertical. When combined with a new technique for calculating the effects of the tether, this enabled light to moderate low-level winds at fixed heights up to 600 m or more to be measured with simple, cheap, and readily mobile equipment; and a slight modification of the technique allowed measurement of winds in and above fog. Wind speeds measured by the ballon technique showed reasonably good agreement with measurements by an anemometer carried beneath the balloon.Glossary of Symbols a, b, c Coefficients in the relationship between lnC d and lnR - A Quantity under square root in solution for lnV whena0 - C d Wind drag coefficient for balloon - C dc Value ofC d given by calibration curve of Table I - D Dynamic wind pressure force on balloon - F Buoyant free lift of balloon with load - Re Reynold's number of balloon (sphere) - R = Re/105 - r Radius of sphere - T Tension in tether - V Wind speed - 83() =(lnC dc -lnC d ) when 83° , or 0 for other - Error in lnC d - Elevation of tether where attached to balloon - Elevation of balloon from ground tether point - Molecular viscosity of air - Ratio of circumference to diameter of circle - Density of air  相似文献   

18.
Impacts of climate change on vegetation are often summarized in biome maps, representing the potential natural vegetation class for each cell of a grid under current and changed climate. The amount of change between two biome maps is usually measured by the fraction of cells that change class, or by the kappa statistic. Neither measure takes account of varying structural and floristic dissimilarity among biomes. An attribute-based measure of dissimilarity (V) between vegetation classes is therefore introduced. V is based on (a) the relative importance of different plant life forms (e.g. tree, grass) in each class, and (b) a series of attributes (e.g. evergreen-deciduous, tropical-nontropical) of each life form with a weight for each attribute. V is implemented here for the most used biome model, BIOME 1 (Prentice, I. C. et al., 1992). Multidimensional scaling of pairwise V values verifies that the suggested importance values and attribute weights lead to a reasonable pattern of dissimilarities among biomes. Dissimilarity between two maps (V) is obtained by area-weighted averaging of V over the model grid. Using V, present global biome distribution from climatology is compared with anomaly-based scenarios for a doubling of atmospheric CO2 concentration (2 × CO2), and for extreme glacial and interglacial conditions. All scenarios are obtained from equilibrium simulations with an atmospheric general circulation model coupled to a mixed-layer ocean model. The 2 × CO2 simulations are the widely used OSU and GFDL runs from the 1980's, representing models with low and high climate sensitivity, respectively. The palaeoclimate simulations were made with CCM1, with sensitivity similar to GFDL. V values for the comparisons of 2 × CO2 with present climate are similar to values for the comparisons of the last interglacial and mid-Holocene with present climate. However, the two simulated 2 × CO2 cases are much more like each other than they are to the simulated interglacial cases. The largest V values were between the last glacial maximum and all other cases, including the present. These examples illustrate the potential of V in comparing the impacts of different climate change scenarios, and the possibility of calibrating climate change impacts against a palaeoclimatic benchmark.  相似文献   

19.
The aerodynamic classification of the resistance laws above solid surfaces is based on the use of a so-called Reynolds roughness number Re s =h s u */, whereh s is the effective roughness height, -viscosity,u *-friction velocity. The recent experimental studies reported by Toba and Ebuchi (1991), demonstrated that the observed variability of the sea roughness cannot be explained only on the basis of the classification of aerodynamic conditions of the sea surface proposed by Kitaigorodskii and Volkov (1965) and Kitaigorodskii (1968) even though the latter approach gains some support from recent experimental studies (see for example Geernaertet al. 1986). In this paper, an attempt is made to explain some of the recently observed features of the variability of surface roughness (Toba and Ebuchi, 1991; Donelanet al., 1993). The fluctuating regime of the sea surface roughness is also described. It is shown that the contribution from the dissipation subrange to the variability of the sea surface can be very important and by itself can explain Charnock's (1955) regime.  相似文献   

20.
The influence of the main large-scale wind directions on thermally driven mesoscale circulations at the Baltic southwest coast, southeast of Sweden, is examined. The aim of the study is to highlight small-scale alterations in the coastal atmospheric boundary layer. A numerical three-dimensional mesoscale model is used in this study, which is focused on an overall behaviour of the coastal jets, drainage flows, sea breezes, and a low-level eddy-type flow in particular. It is shown that synoptic conditions, together with the moderate terrain of the southeast of Sweden (max. height h0 206 m), governs the coastal mesoscale dynamics triggered by the land-sea temperature difference T. The subtle nature of coastal low-level jets and sea breezes is revealed; their patterns are dictated by the interplay between synoptic airflow, coastline orientation, and T.The simulations show that coastal jets typically occur during nighttime and vary in height, intensity and position with respect to the coast; they interact with downslope flows and the background wind. For the assigned land surface temperature (varying ±8 K from the sea temperature) and the opposing constant geostrophic wind 8 m s-1, the drainage flow is more robust to the opposing ambient flow than the sea breeze later on. Depending on the part of the coast under consideration, and the prevailing ambient wind, the sea breeze can be suppressed or enhanced, stationary at the coast or rapidly penetrating inland, locked up in phase with another dynamic system or almost independently self-evolving. A low-level eddy structure is analyzed. It is governed by tilting, divergence and horizontal advection terms. The horizontal extent of the coastal effects agrees roughly with the Rossby radius of deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号