首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 718 毫秒
1.
流域水系是研究水文水资源、地貌演化和生态环境及水土治理等的基础数据,高精度的水系提取对流域研究十分重要。本文以空间分辨率均为30 m的 AW3D30 DSM、SRTM1 DEM和ASTER GDEM2数字高程模型作为基本的地形数据,基于SWAT模型提取犟河流域水系,通过河网“套合差”、水系相对误差、Google Map水文数据及蓝线河网对提取结果进行误差分析与综合评价,探讨河道剖面和地形特征对水系提取精度的影响。结果表明:① 集水面积阈值是决定河网水系提取精度的关键参数,阈值越大,提取的河网密度越小,反之提取的河网密度越大;② 基于河网密度与集水阈值二阶导数的幂函数与直线相切的数学求值方法确定流域最佳集水面积阈值,能避免最佳集水阈值取值的主观性,提取的河网水系与实际河道相符;③ AW3D30 DSM数据提取的流域河网水系与Google Map高分辨率影像的水系偏差最小,且AW3D30 DSM数据提取的水系与蓝线河网的河网“套合差”和水系相对误差值均最低,能真实反映中低山丘陵山区流域水系发育的疏密程度,吻合度最好;④ 多源DEM数据提取结果均显示为河床比降大和横剖面曲线为窄深式的“V”形河谷提取的水系精度高于河床比降小和横剖面曲线为 “碟”形河谷的提取精度;⑤ AW3D30 DSM数据的地形起伏和坡度标准差最大,有利于山区河网水系的提取。因此,基于SWAT模型和AW3D30 DSM数据提取的山区流域水系可最大限度反映流域水系的真实情况,精度最高,此方法和数据源可应用于中低山丘陵山区流域的水系提取研究。  相似文献   

2.
基于SRTM和ASTER GDEM两种DEM数据源,以胶东半岛为研究区,应用ArcMap水文分析(Arc HydroTools)扩展模块和"burn in"算法,提取河网及流域范围。结果显示,集水面积阈值变化直接影响数字河网密集度。对胶东半岛而言,采用分辨率为90m×90m的SRTM数据可较好地提取河网水系及划分流域;提取的11个主要流域,充分体现了胶东半岛地区的流域特征。  相似文献   

3.
基于DEM的流域水系分维计算与结果分析   总被引:7,自引:0,他引:7  
利用ArcGIS8.3和ArcVIEW3.2中的水文分析模块,根据不同最小河流长度,提取晋江流域河网信息,采用传统的网格法计算提取的不同河网的分维,研究以最小河流长度所提取的不同河网密度与分维的关系,确定晋江流域分维,分析流域地貌的演变。  相似文献   

4.
水系自动提取是保证基础地理数据现势性的关键,而获得最佳集水面积阈值是提高水系提取精度的前提条件。集水面积阈值一般依靠定性分析的方法获取,采用均值变点分析法定量确定水系的集水面积阈值,可以满足基础地理数据精确性的要求。以云南省龙川江流域为研究区域,基于资源三号测绘卫星ZY-3 DSM和SRTM DEM两种数据,利用GIS工具分别提取该流域水系,再由均值变点分析法确定最佳集水面积阈值,并比较分析这两种水系的提取精度。研究结果表明:1随着集水面积阈值的增加,提取的水系密度减小且趋缓。ZY-3 DSM和SRTM DEM的最佳集水面积阈值分别是6.0 km~2和2.75 km~2;2在最佳集水面积阈值下,ZY-3 DSM提取的河流数比SRTM DEM多20.6倍,河流等级多2级,各级支流数为SRTM DEM的4.7~9.5倍不等,水系密度达到SRTM DEM的4.5倍;3与1:250 000水系数据相比,ZY-3 DSM和SRTM提取的河流点位平均相差395.23 m,RMSE为391.83 m。由此可见,利用均值变点分析法基于ZY-3 DSM提取的水系精度更高,完全满足测绘地理数据更新的现势性、准确性要求。  相似文献   

5.
以研究区3030个流域水文数据为基础,利用数字高程模型(DEM)并运用非线性拟合法分析中小流域集水面积阈值与河源密度的相关关系,分析集水面积阈值与河源密度的幂函数关系可得,幂指数a近似为-1,拟合公式常系数k具有区域分布特征,反映了不同地区的河网发育程度,k值越大,河源密度越大,河网越密集,河网发育程度越高。对河源密度随集水面积阈值的变化趋势进行分析,发现2个具有统计意义的阈值临界点,分别为河源从坡面到沟道及从沟道到河道的集水面积分界点,在研究区内选择不同k值区间的贡曲流域、辰清河流域和藤条江流域作为样本流域,利用样本流域数字正射影像(DOM)手工提取其沟谷河网及主河道河网的图形信息和水文信息,并与分界点处阈值提取的河网作对比,将分析得出的河网密度相对误差率作为检验标准,对临界点的物理意义进行检验。  相似文献   

6.
基于DEM的澜沧江流域水文信息提取方法的研究   总被引:10,自引:0,他引:10  
从DEM中提取地形、地貌信息是当今GIS空间分析领域中的一个重要方面。而河网提取、子流域划分以及分布式水文模型等对水文地理信息的分析、模拟技术和方法更是其中的难点。本文针对常用的水系提取方法,简单介绍其基本原理,并对澜沧江流域进行了水文信息提取试验,对试验结果进行了比较和分析。  相似文献   

7.
TanDEM-X 90 m 数字高程模型(DEM)在其原始雷达影像的采集与DEM产品生产过程中,坡度、坡向和地表覆盖物等 因素都会对误差产生一定的影响。为了便于该数据更好地为各领域的研究提供服务,本文以整个中国大陆为研究区域,运用ICESat/GLA14数据对该区域的TanDEM-X 90 m DEM对应位置的高程数据进行提取统计,对比分析了我国陆地区域 TanDEM-X DEM数据与GLA14高程点数据的整体误差精度,并提取坡度、坡向地形因子,研究TanDEM-X 90 m DEM误差在不同坡度、不同坡向以及不同地表覆盖物影响下的分布规律。结果表明:① TanDEM-X 90 m DEM在中国区域整体的绝对误差均值为3.89 m,中误差为9.03 m,标准差为8.85 m; ② 受地形因子的影响,在坡度<3°时,绝对误差均值仅为1.29 m,标准差为2.84 m; 在坡度>25°时,绝对误差均值20 m以上,标准差也达到30 m左右,即误差随着坡度的上升逐渐增大;③ 坡向对误差也有一定影响,在南北方向的绝对误差均值明显比东西方向小;④ 受地表覆盖物影响较大,在荒地误差最小,绝对误差均值仅为 1.85 m,但在冰川积雪区绝对误差均值达到12.68 m。通过与无人机获取的等高线及剖面图对比分析发现,TanDEM-X 90 m DEM能较好地反映真实地形情况。最后,根据不同影响因素的权值,绘制全国范围的TanDEM-X 90 m DEM误差绝对值分布图,且验证了可靠性。  相似文献   

8.
南极洲被巨厚冰雪覆盖,地质构造以南极横断山脉为界,总体分为东南极地盾和西南极活动带。数字高程模型(DEM)是研究南极冰盖变化的基础数据之一。通过多期次数字高程模型相比较获得高程的变化信息,是分析南极冰盖厚度变化和物质平衡的重要手段。然而不同类型DEM之间存的平面误差和垂直误差影响分析结果的精度。首先利用配准消除DEM间的水平误差,然后计算并按坡度提取CryoSat DEM与其他DEM的平均高程差和标准差,最后分析高程差的时空变化特征。通过分析发现,DEM之间存在不同的平面误差。其中TanDEM_X DEM与CryoSat DEM的高程平面偏差最小,而ICESat DEM与CryoSat DEM的高程平面偏差最大。在垂直方向上,0°~1°的坡度范围内,CryoSat DEM与TanDEM_X DEM的平均高程差在3.5~5.5 m之间,标准差小于18.0 m;CryoSat DEM和Bamber 1km DEM的平均高程差在-2.5~+1.0 m之间,标准差小于24.2 m;CryoSat DEM与ICESat DEM的平均高程差在-25.0~-1.0 m之间,标准差小于47.2 m;CryoSat DEM与RAMPv2 DEM的平均高程差在1.3~3.2 m之间,标准差小于45.6 m。通过研究发现南极冰盖内部高程增加,但西南极冰盖和东南极冰盖高程均在降低,且西南极降低明显,同时南极边缘地区高程降低明显。本研究为全球变化研究和南极物质平衡研究提供了重要参考。   相似文献   

9.
河源区边界是重要的国家基础地理信息之一,但除长江、黄河等大江大河外的我国大部分其他中小流域仍缺乏确切的河源区边界信息,需要科学划定河源区边界以支持流域水生态保护相关政策的规划与实施。对此,本文在确立河源区划分原则、明确划分依据的基础上,提出了基于多特征指标和层次聚类分析法的河源区边界划定方法。以沁河流域为研究案例,首先利用均值变点分析法计算沁河流域子流域提取的最佳汇流累积量分位数阈值为0.15%,再基于子流域的多特征指标运用层次聚类分析法最终确定河源区范围边界,并将该方法应用于长江、黄河流域进行验证分析。结果表明:① 基于多特征指标和层次聚类分析提取的沁河流域河源区范围处于河底比降法、水文站点方法得到的源区范围面积之间;② 该方法在长江、黄河流域河源区划分结果的交并比分别达到85.40%和79.99%,侧面验证了本文方法进行河源区边界划分的合理性与适用性。基于多特征指标和层次聚类分析的河源区边界自动划分方法可以简捷高效地识别缺乏明确河源区边界信息的流域河源区范围,为我国河源区生态安全屏障识别、水资源保护相关政策的规划和实施提供科学支撑。  相似文献   

10.
基于DEM的福建省小流域划分研究   总被引:5,自引:0,他引:5  
以1∶10万的数字线划图为工作底图,在ARC/INFO软件环境下,采用空间内插法生成福建省的DEM。其在ARC/INFO软件的水文模块环境下,经过数据预处理、流向分析、汇流分析和流域识别等过程,最终自动提取1435个小流域。研究结果表明:在山区,流域界线基本与分水岭吻合,但在平坦地区由于等高线稀疏,加上福建海岸线非常曲折,海湾支离破碎,流域提取的结果不尽人意,流域界线需要人工进一步修正。基于DEM的流域的快速提取,大大节省了的人力、物力,从提取的效率和精度来看都是切实可行的。随着DEM的精度将不断提高,这种方法将为在全省范围内实现流域各自然要素空间组合特征的快速分析与站点观测数据的综合管理,以及流域信息的空间可视化浏览、查询、统计和流域水文模型的应用分析奠定了坚实的基础,从而推动了生态环境保护、生态环境建设等生态环境管理工作的实施。  相似文献   

11.
数字高程模型(DEM)包含的信息常作为重要的水文水动力研究基础数据,但是由于公共源DEM数据精度不能完整表达河床地形,所以无法应用于河流泛洪分析等研究工作.因此,本研究开展了基于DEM数据构建数字河床的工作,首先对提取的纵向河网高程数据引入了强局部加权回归算法进行平滑处理以消除畸点;然后以河面要素文件为掩膜,采用反距离...  相似文献   

12.
Depressions in landscapes function as buffers for water and sediment. A landscape with depressions has less runoff, less erosion and more sedimentation than that without depressions. Sinks in digital elevation models (DEMs) can be considered the real features that represent depressions in actual landscapes or spurious features that result from errors in DEM creation. In many hydrological and erosion models, all sinks are considered as spurious features and, as a result, these models do not deal with the sinks that represent real depressions. Consequently, the surface runoff and erosion are overestimated due to removing the depressions. Aiming at this problem, this paper presents a new method, which deal with the sinks that represent real depressions. The drainage network is extracted without changing the original DEM. The method includes four steps: detecting pits, detecting depressions, merging depressions, and extracting drainage network. Because the elevations of grid cells are not changed, the method can also avoid producing new fiat areas, which are always produced by the conventional filling methods. The proposed method was applied to the Xihanshui River basin, the upper reach of the Jialingjiang River basin, China, to automatically extract the drainage network based on DEM. The extracted drainage network agrees well with the reality and can be used for further hydrologic analysis and erosion estimation.  相似文献   

13.
Drainage responds rapidly to tectonic changes and thus it is a potential parameter for teetonogeomorphological analysis. Drainage network of Potwar is a good geological record of movement, displacements, regional uplifts and erosion of the tectonic units. This study focuses on utilizing drainage network extracted from Shuttle Radar Digital Elevation Data (SRTM-DEM) in order to constrain the structure of the Potwar Plateau. SWAN syncline divides Potwar into northern Potwar deformed zone (NPDZ) and southern Potwar platform zone (SPPZ). We extracted the drainage network from DEM and analyzed 112 streams using stream power law. Spatial distribution of concavity and steepness indices were used to prepare uplift rate map for the area. DEM was further utilized to extract lineaments to study the mutual relationship between lineaments and drainage patterns. We compared the local correlation between the extracted lineaments and drainage network of the area that gives us quantitative information and shows promising prospects. The streams in the NPDZ indicate high steepness values as compared to the streams in the SPPZ. The spatial distribution of geomorphic parameters distinctive deformation and uplift rates suggest the among eastern, central and western parts. The local correlation between drainage network and lineaments from DEM is strongly positive in the area within I km of radius.  相似文献   

14.
数字河网提取的影响参数优化分析   总被引:1,自引:0,他引:1  
数字高程模型(Digital Elevation Model,DEM)是提取数字河网的主要数据源.但是,由于在受到带有尺度效应的DEM空间分辨率和数字河网提取过程中,汇流面积阈值等参数的影响,使得河网提取的结果具有很大的主观性,因此,如何优化两者的取值,对于更准确地模拟地表河网具有重要的意义.本文以厦门市作为研究区,以...  相似文献   

15.
汇水区划分是分布式水文模型计算的基础。针对现有方法使用DEM在平原城市地区划分的汇水区不符合实际地形情况,本文提出了一种面向城市平原地区分级划分汇水区的技术方法。该方法从城市用地分类角度出发将城市分为中心城区和郊区,依据城市排水主干水系进行汇水区一级划分,将影响中心城区和郊区的不同径流因子分别融入DEM中,利用细化的DEM进行二级汇水区划分;在此基础上,根据实际汇流情况,结合Voronoi图,对中心城区进行三级划分,最后通过GIS技术进行修正。该方法既结合了传统DEM生成子流域的算法,又融入了城市区域地物地貌特点,能更好地满足城市地区的需要。选择上海市嘉定区西北部地区为实验样区,利用该方法进行汇水区划分比较表明,其对于城市平原地区具有很好的适用性。  相似文献   

16.
基于ArcView GIS平台,利用流域水资源规划管理软件工具MIKE BASIN,以西藏达孜县为试验区,采用50×50m格网DEM数据,开展拉萨河流域内的地表水的产汇计算,并进行流域水资源合理配置研究。本文建立了流域供需水的空间分析网络,对各汇流区进行流域模拟分析,研究结果以直观的专题图表显示,为本区的流域水资源管理提供了可视化的研究框架。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号