共查询到20条相似文献,搜索用时 0 毫秒
1.
针对现有研究在准确估算叶绿素含量方面的不足,该文运用粒子群优化算法和支持向量机构建叶片尺度作物叶绿素含量高光谱反演模型:利用PROSPECT模型模拟作物光谱,并运用所对应的叶绿素含量建立训练数据集,然后采用粒子群优化算法支持向量机学习训练数据集,最后建立实测叶片叶绿素含量估测模型。研究结果表明,粒子群优化算法和支持向量机构建的反演模型能准确预测作物的叶绿素含量,能够解决小样本作物采样点情况下叶绿素含量反演问题,可以作为作物叶绿素含量估测的参考方法。 相似文献
2.
3.
基于支持向量机的土地利用变化模拟模型 总被引:3,自引:0,他引:3
以湖北省为例,选取5大类7个耕地,利用变化驱动力因子,将1986~2000年的数据作为样本训练数据,2001~2004年的数据作为测试数据,与耕地变化进行基于支持向量机的回归模拟,用遗传算法对参数进行优化,并与BP、RFB神经网络模型进行了对比。模拟结果精度分析显示,SVM模型较BP神经网络模型理想,与RFB神经网络接近。并运用该模型对湖北省2010年的耕地利用变化进行了预测,结果合理。研究表明,SVM模型有较强的自学习、自适应能力,在土地利用变化模拟中有着广泛的应用前景。 相似文献
4.
5.
6.
7.
机载LiDAR点云数据分类技术是LiDAR数据后处理的关键步骤。信息向量机、相关向量机及支持向量机可以在LiDAR点云数据分类中发挥重要作用。本文将三种分类器应用到点云数据分类中,通过实验验证了它们在点云数据分类中的性能,总结了它们在点云数据分类任务中的应用潜力。 相似文献
8.
近几十年来,基于遥感影像进行水深反演一直是国内外学者研究的热点。本文使用WorldView-3高分辨率卫星影像,结合卫星测高数据,以中国海南岛附近的蜈支洲岛及其附近海域为主要研究区域,在进行数据预处理、底质分类之后,分别通过多元线性回归模型、Stumpf对数比值模型和BP神经网络集中对岛屿周围0~20 m水域的水深进行反演和结果分析。结果证明,对这3种模型而言,在进行底质分类之后精度都会明显提升。其中,BP神经网络反演水深精度最高(均方根误差范围为0.2~0.7 m),多元线性回归模型次之(均方根误差范围为0.3~0.8 m),对数比值模型精度最低(均方根误差范围为0.6~1.1 m)。 相似文献
9.
10.
基于支持向量机的航空影像纹理分类研究 总被引:8,自引:0,他引:8
提出一种用SVM解决航空影像纹理分类的方法。在利用一些常用的纹理特征的基础上,将SVM用于航空影像纹理分类,有效地解决了特征选择难和高维数问题。试验表明,这种方法可以取得较好的结果。 相似文献
11.
基于支持向量机的特定目标检测方法 总被引:1,自引:1,他引:1
提出了运用支持向量机进行目标检测的方法。通过对航空影像中的军事目标和自然背景两类样本进行学习,支持向量机检测方法建立了针对目标和非目标有效区分的识别模型,该模型能够对航空影像中所有的区域进行快速的检测和识别,检测到所有感兴趣的人造军事目标。试验表明,该方法快速、高效且具备一定的鲁棒性。 相似文献
12.
13.
邓军 《测绘与空间地理信息》2017,(1)
目前,用遥感研究水深多集中于沿海及内陆水域,煤矿塌陷地水深反演研究很少。本文以徐州九里塌陷湖为例,通过分析水深值与水体反射率的关系,得到各单因子的线性、非线性反演模型,经分析其误差相对较大;选取各水深分段内误差较小的因子,最终建立多元回归模型,其绝对误差、相对误差均优于单因子模型。 相似文献
14.
15.
基于支持向量机的CBERS-02卫星影像信息提取 总被引:1,自引:0,他引:1
CBERS卫星是由中国空间技术研究院与巴西空间研究院联合研制的地球资源遥感卫星,CBERS-02卫星数据总体质量比CBERS-01卫星有所提高,本文利用支持向量机方法对CBERS-02卫星影像信息进行提取。研究中首先用6S模式对影像进行大气校正,然后选择RBF为支持向量机方法的核函数,并用交叉验证方法得到影响RBF核函数的两个最佳参数值进行学习完成信息提取,最后将提取结果制作成矢量图。通过研究得出用大气校正后的数据进行信息提取分类精度有所提高;与最大似然法和最小距离法相比,支持向量机方法分类精度较高。通过将研究结果与ETM+影像进行比较得出,CBERS-02卫星影像精度能够满足应用需求并能代替TM/ETM+数据开展研究工作。 相似文献
16.
为监测路域植被生态环境,利用遥感影像和辐射传输模型物理基础实现了对植被冠层等效水厚度(EWT)的估测。提出了利用PRO4SAIL与支持向量机回归的组合模型对等效水厚度进行反演的方法。选取Landsat7 ETM+影像,结合实测数据探索验证了PRO4SAIL与支持向量机回归的组合模型的植被参数反演的实用性和准确性。研究表明,该组合模型具有较好的预测能力,反演得到的等效水厚度含量精度较高,为支持向量机模型应用于遥感影像反演植被参数提高了有力支撑。 相似文献
17.
针对常规支持向量机预测模型在变形数据处理预测中的不足,本文提出了一种基于改进灰狼算法的支持向量回归模型。重新定义了灰狼算法中的收敛因子,并引入多项式变异算子,使得算法在收敛方面得到改善;将具有局部特征的柯西核函数和具有全局特征的多项式核函数进行组合,以此来综合核函数的两种不同特性,提高预测数据集的整体精度。采用基坑监测项目数据对模型预测能力进行实验,并与其他模型进行对比分析。结果表明,本文模型对结构变形发展演化的非线性特征拟合精度更高,可以应用到时间序列变化的数据预测处理。 相似文献
18.
基于Worldview3数据的浅海水深反演研究 总被引:1,自引:0,他引:1
传统水深测量技术灵活性较差,水深资料更新周期长、时效性差。因此,我们需要找寻一种高效便捷方法提取水深。本文采用Worldview3多光谱高分辨率数据与实测数据相结合,针对不同的海底底质类型,建立统计回归模型(单因子模型和多因子模型),对西沙群岛北岛周边的浅海海域,进行浅海水深反演。通过对研究结果的分析,发现单因子模型和多因子模型相关系数都在0.91以上,标准误差也都在1.27以下,反演数据与实测数据偏差较小。且将海底底质分为沙质和草质海底底质类型后建模的精度要高于未对海底底质分类建模的精度。 相似文献
19.