首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 491 毫秒
1.
E R Priest  T G Forbes 《Solar physics》1989,119(1):211-214
The concepts of magnetic reconnection that have been developed in two dimensions need to be generalised to three-dimensional configurations. Reconnection may be defined to occur when there is an electric field (E) parallel to field lines (known as potential singular lines) which are potential reconnection locations and near which the field has an X-type topology in a plane normal to that field line. In general there is a continuum of neighbouring potential singular lines, and which one supports reconnection depends on the imposed flow or electric field. For steady reconnection the nearby flow and electric field are severely constrained in the ideal region by the condition that E = 0 there. Potential singular lines may occur in twisted prominence fields or in the complex magnetic configuration above sources of mixed polarity of an active region or a supergranulation cell. When reconnection occurs there is dynamic MHD behaviour with current concentration and strong plasma jetting along the singular line and the singular surfaces which map onto them.  相似文献   

2.
Biskamp  D.  Welter  H. 《Solar physics》1989,120(1):49-77
The evolution of two-dimensional coronal magnetic arcades driven by photospheric shear flows is studied by numerical solution of the resistive MHD equations neglecting pressure and gravitational forces. By varying the distribution of the frozen-in photospheric magnetic flux, the shear flow profile and the magnetic Reynolds number, a fairly general picture is obtained. Isolated arcades develop in a quasi-selfsimilar stable way, invalidating previous studies of equilibrium sequences 2 = F() with monotonically increasing parameter . Groups of several interacting arcades show a more complex behavior. When of sufficiently large height arcade structures tend to bifurcate, leading to plasmoid (or filament) formation. Usually this is a slow resistive process and the plasmoid is confined in the arcade interior. Configurations containing at least three arcades may give rise to fast plasmoid ejection.  相似文献   

3.
S. I. Grachev 《Astrophysics》2001,44(3):369-381
General equations of the Wiener-Hopf type for a matrix source function with nonsymmetrical kernel matrices are considered in the form of continuous superpositions of exponentials. Certain problems in the transfer of polarized radiation reduce to equations of this kind. In general there are two different H-matrices in the theory (which are a generalization of the Ambartsumian-Chandrasekhar scalar H-function), generated by an initial equation of the Wiener-Hopf type and its analog, but with the kernel matrix and the unknown matrix of the source function being transposed. In addition there are two corresponding I-matrices, actually consisting of Laplace transforms of the matrix source functions, through which the Stokes vector of the escaping radiation is directly determined. In the problem of diffuse reflection from a half-space, the I-matrices are expressed in terms of a product of these two H-matrices, and for the latter there is a system of nonlinear equations which is a generalization of the corresponding Ambartsumian-Chandrasekhar scalar equation. In the problem of the emission of partially polarized radiation from a half-space containing uniformly distributed internal sources we have obtained a system of two nonlinear equations for the I-matrices directly. In the special case of a symmetrical kernel matrix, this system of two equations reduces to one equation. It is shown that in the case of resonance scattering in a weak magnetic field (the Hanle effect) in the approximation of complete frequency redistribution, the system of two nonlinear equations for the I-matrices (of dimension 6×6) also reduces to one nonlinear equation, although the kernel matrix for the main integral equation for the matrix source function () is not symmetrical. For this case we have found a matrix generalization of the so-called law, consisting of an equation of the type (0)Â T (0) = (where T denotes transposition) at the boundary of a half-space containing uniformly distributed primary sources of partially polarized radiation.  相似文献   

4.
The dynamical expansion and motion of supernova remnants, double radio galaxies, etc., into and through the surrounding interstellar and/or intergalactic gas are processes of some importance in astrophysics for inferring energy, magnetic fields, particle pressure, etc. in a wide variety of astrophysical situations. We are usually hampered by the fact that it is often difficult to obtain a solution to the equations describing the flow of a gas into a surrounding medium starting from a postulated equation of state. The present paper shows how, by starting with a fluid flow that one believes adequately describes the gas, it is possible to solveby quadratures for the associated pressure and density. And in making these remarks we are implicitly assuming plane, cylindrical or spherically symmetric flow velocities which may be unsteady in time. The fluid speed can be chosen to be either non-relativistic or relativistic, but the method is valid only when the resulting gas pressurep, is small compared to c 2, where is the mass density. We illustrate the method by solving a simple problem. In view of the ever increasing number of astrophysical situations where some measure of the fluid flow through an object is becoming available (often from Doppler shifted lines) we believe the present technique shou'd be of some use in helping to unravel the internal dynamical properties of the flowing gas.  相似文献   

5.
This series of papers is devoted to multiple scattering of light in plane parallel, inhomogeneous atmospheres. The approach proposed here is based on Ambartsumyan's method of adding layers. The main purpose is to show that one can avoid difficulties with solving various boundary value problems in the theory of radiative transfer, including some standard problems, by reducing them to initial value problems. In this paper the simplest one dimensional problem of diffuse reflection and transmission of radiation in inhomogeneous atmospheres with finite optical thicknesses is considered as an example. This approach essentially involves first determining the reflection and transmission coefficients of the atmosphere, which, as is known, are a solution of the Cauchy problem for a system of nonlinear differential equations. In particular, it is shown that this system can be replaced with a system of linear equations by introducing auxiliary functions P and S. After the reflectivity and transmissivity of the atmosphere are determined, the radiation field in it is found directly without solving any new equations. We note that this approach can be used to obtain the required intensities simultaneously for a family of atmospheres with different optical thicknesses. Two special cases of the functional dependence of the scattering coefficient on the optical thickness, for which the solutions of the corresponding equations can be expressed in terms of elementary functions, are examined in detail. Some numerical calculations are presented and interpreted physically to illustrate specific features of radiative transport in inhomogeneous atmospheres.  相似文献   

6.
In Parker's original model, the solar wind is represented as a spherically symmetric hydrodynamic flow. The velocity is radially directed and decoupled from the magnetic field. The simple extension of this model to include a dependence on the polar angle, , is shown to be invalid for radial flow and radial magnetic field. This work demonstrates how ad hoc symmetry conditions imposed to simplify a non-linear problem can be incompatible with the basic hydromagnetic equations.  相似文献   

7.
A similarity analysis for the free and forced convection hydromagnetic flow over a horizontal semi-infinite flat plate through a non-homogeneous porous medium is presented, taking into account the hydrostatic pressure variation normal to the flat plate. The similarity solution of the problem under consideration is obtained under certain valid simplifying assumptions when, (i) the plate temperature is inversely proportional to the square root of the distance from the leading edge, (ii) the intensity of the applied magnetic field, normal to the plate, changes with the inverse square root of the distance from the leading edge, and (iii) the permeability of the porous medium, occupying a semi-infinite region of the space bounded by the flat plate, is proportional to the distance measured in the direction of the flow. A numerical solution of the resulting system of ordinary differential equations of motion and energy is obtained, depending on the Prandtl number Pr, the magnetic parameterM n ,the bouyancy parameter , and the permeability parameterP m .The variations of the fundamental quantities of the problem are shown graphically followed by a quantitative discussion.  相似文献   

8.
On the ground of the proper wave representation the general theory is developed of radiative transfer in a homogeneous plasma with the strong magnetic field ( B /1). The linear and nonlinear equations are derived which generalize the corresponding equations of scalar radiative transfer theory in isotropic media. The solutions of some problems are given for the cases when the magnetic field is perpendicular to the surface: diffuse reflection of radiation from a semiinfinite medium, provided the sources are placed far from the surface (Milne's problem) and have constant intensity, increase linearly or quadratically with the optical depths, or decrease exponentially from the surface.  相似文献   

9.
A theory of gravitation with a flat background metric and a dynamical variable (variable gravitational constant) is investigated. It is shown that such bimetric scalar-tensor theory (BSTT) generalized GR as all the solutions of GR equations and(x) = constant satisfy BSTT equations, firstly, and BSTT equations contain non-Einstein solutions with the variable, secondly. Due to this fact, the problem on the agreement of BSTT with the observational data is reduced to the problem on the agreement of GR with the observational data and to the interpretation of the solutions with the variable. The latter may prove useful for the prediction of new effects. Examples of such effects are discussed.  相似文献   

10.
The problem to compute the magnetic field above the chromosphere using data of the vector = B t/Bt that gives the projected field direction can be solved with different approximations. The field of direction vectors is, however, not the only field accessible to observations. The Stokes parameters, which are components of the radiation tensor, can be measured at each point of the image plane. The directions of the eigenvectors of the radiation tensor define two mutually orthogonal systems of integral curves in the image plane. These families of curves have singular points, which are generally of different type than those of the vector field. When the morphology of H chromospheric fibrils are used to infer the topology of the magnetic field, a similar problem is met, suggesting that singular points should also be present there.  相似文献   

11.
A recent least squares algorithm, which is designed to adapt implicit models to given sets of data, especially models given by differential equations or dynamical systems, is reviewed and used to fit the Hénon-Heiles differential equations to chaotic data sets.This numerical approach for estimating parameters in differential equation models, called theboundary value problem approach, is based on discretizing the differential equations like a boundary value problem,e.g. by a multiple shooting or collocation method, and solving the resulting constrained least squares problem with a structure exploiting generalized Gauss-Newton-Method (Bock, 1981).Dynamical systems like the Hénon-Heiles system which can have initial values and parameters that lead to positive Lyapunov exponents or phase space filling Poincaré maps give rise to chaotic time series. Various scenarios representing ideal and noisy data generated from the Hénon-Heiles system in the chaotic region are analyzedw.r.t. initial conditions, parameters and Lyapunov exponents. The original initial conditions and parameters are recovered with a given accuracy. The Lyapunov spectrum is then computed directly from the identified differential equations and compared to the spectrum of the true dynamics.presently at IWR, Universität Heidelberg, Im Neuenheimer Feld 368, D-6900 Heidelberg, Germany  相似文献   

12.
A model of two-current-loop collisions is presented to explain the impulsive nature of solar flares. From MHD equations considering the gravity and resistivity effects we find self-consistent expressions and a set of equations governing the behavior of all physical quantities just after magnetic reconnection has taken place. Numerical simulations have revealed that the most important parameters of the problem are the plasma and the ratio of initial values of pressure gradient in the longitudinal and radial directions. Thus, the low plasma case during aY-type interaction (initial longitudinal pressure gradient is comparable with initial radial pressure gradient) shows a rapid pinch and simultaneous enhancement of all physical quantities, including the electric field components, which are important for high-energy particle acceleration. However, an increase of the plasma causes a weakening of the pinch effect and a decrease of extreme values of all physical quantities. On the other hand, for anX-type collision (initial longitudinal pressure gradient is much greater than initial radial pressure gradient), which is able to provide a jet, the increase of the plasma causes a high velocity jet. As for aI-type collision (initial longitudinal pressure gradient is much less than initial radial pressure gradient) it shows neither jet production nor very strong enhancement of physical quantities. We also consider direct and oblique collisions, taking into account both cases of partial and complete reconnection.  相似文献   

13.
The purpose of this paper is to present a general analysis of the planar circular restricted problem of three bodies in the case of exterior mean-motion resonances. Particularly, our aim is to map the phase space of various commensurabilities and determine the singular solutions of the averaged system, comparing them to the well-known case of interior resonances.In some commensurabilities (e.g. 1/2, 1/3) we show the existence of asymmetric librations; that is, librations in which the stationary value of the critical angle =(p+q)1pq is not equal to either zero or . The origin, stability and morphogenesis of these solutions are discussed and compared to symmetric librations. However, in some other resonances (e.g. 2/3, 3/4), these fixed points of the mean system seem to be absent. Librations in such cases are restricted to =0 mod(). Asymmetric singular solutions of the planar circular problem are unkown in the case of interior resonances and cannot be reproduced by the reduced Andoyer Hamiltonian known as the Second Fundamental Model for Resonance. However, we show that the extended version of this Hamiltonian function, in which harmonics up to order two are considered, can reproduce fairly well the principal topological characteristics of the phase space and thereby constitutes a simple and useful analytical approximation for these resonances.  相似文献   

14.
Analytical investigations of the method of linear nonsingular integral equations, originally proposed by É. Kh. Danielyan [Astrofizika 36,225 (1993)] for the solution of problems in the theory of radiative transport in a medium of finite optical thickness with isotropic scattering, are continued in the present article. It is shown that the solution of problems of the stated class reduce to the determination of only the functions u ± (, ) in the general case with true absorption. Explicit expressions are obtained for these functions at =0. The feasibility of a complete analytical solution of the problem is newly formulated as the solution of a Fredholm integral equation on the semiaxis with a kernel that admits representation by a superposition of exponential functions [Eq. (25)]. The choice of an efficient procedure for determining the Ambartsumyan -function for a semiinfinite medium is discussed. In particular, a new equation is given for this function.Translated from Astrofizika, Vol. 37, No. 1, pp. 129–145, January–March, 1994.  相似文献   

15.
The flow of laser radiation in a plane-parallel cylindrical slab of active amplifying medium with axial symmetry is treated as a problem in radiative transfer. The appropriate one-dimensional transfer equation describing the transfer of laser radiation has been derived by an appeal to Einstein'sA, B coefficients (describing the processes of stimulated line absorption, spontaneous line emission, and stimulated line emission sustained by population inversion in the medium) and considering the rate equations to completely establish the rational of the transfer equation obtained. The equation is then exactly solved and the angular distribution of the emergent laser beam intensity is obtained; its numerically computed values are given in tables and plotted in graphs showing the nature of peaks of the emerging laser beam intensity about the axis of the laser cylinder.  相似文献   

16.
The stability of the equilibrium points found to exist (cf. Goudaset al., 1985, referred to henceforth as Paper I) in the problem of two parallel, or antiparallel, magnetic dipoles that rotate about the centre of mass of their carrier stars, is studied by computing the characteristic roots of their variational equations. The characteristic equation, a biquadratic, solved for many combinations of and showed that all equilibrium points of this problem are unstable.  相似文献   

17.
A study of the two-dimensional unsteady flow of a viscous, incompressible fluid past an infinite vertical plate has been carried out under the following conditions: (1) constant suction at the plate, (2) wall temperature oscillating about a constant non-zero mean, and (3) constant free-stream. Approximate solutions to coupled non-linear equations governing the flow have been carried out for the transient velocity, the transient temperature, the amplitude and phase of the skin friction, and the rate of heat transfer. The velocity, temperature and amplitude are shown graphically whereas the numerical values of the phases are given in a table. It has been observed that the amplitude of the skin friction decreases with increasing (frequency) but increases with increasingG (Grashof number), while the amplitude of the rat of heat transfer increases with increasing .  相似文献   

18.
Relativistic cosmological field equations are obtained for a non-static stationary Bertotti-Robinson-type space-time for interacting perfect fluid and electromagnetic field. The cosmological solution to the field equations are obtained and the nature of the electromagnetic field as well the perfect fluid are studied. The electromagnetic field generated here corresponds to a special generic case and the perfect fluid distribution degenerates into a barotropic perfect fluid with equation of statep+=0, >0. It is shown here that the interacting barotropic fluid can generate gravitation only when the cosmological constant being a function ofx in a dynamic field.  相似文献   

19.
S. I. Grachev 《Astrophysics》2001,44(4):505-517
A new method is proposed for the numerical solution of nonsteady problems in the theory of radiative transfer. In this method, if the solution at some time t (such as the initial time) is known, then by representing the radiation intensity and all time-dependent quantities (level populations, kinetic temperature, etc.) in the form of Taylor series expansions in the vicinity of t, one can, from the transfer equation and the equations accompanying it (population equations, energy-balance equation, etc.), find all derivatives of that solution at the given time from certain recursive equations. From the Taylor series one can then calculate the solution at some later time t + t, and so forth. The method enables one to analyze nonsteady tradiative transfer both in stationary media and in media with characteristics that vary with time in a given way. This method can also be used to solve nonlinear problems, i.e., those in which the radiation field significantly affects the characteristics of the medium. No iterations are used for this: everything comes down to calculations based on recursive equations. Several problems, both linear and nonlinear, are solved as examples.  相似文献   

20.
The investigation of a large class of problems in physics and astrophysics requires the dtermination of the ranges of some parameters z, E, ... for which inequations of the form F(r; z, E, ... )0 are satisfied for all r in some interval )a, b(. The solution of this problem is given under the form of three general theorems and, resulting from them, a very simple numerical procedure. This can also be used to solve equations of the form df/dt=0 where f is some function of variables and derivatives of these variables (functions of t) with respect to t, for instance Vlasov-type equations in dynamics of flat stellar disks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号