首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Selecting the most appropriate source functions among the various solar, interplanetary and terrestrial activity indices we have attempted to reproduce to a certain degree the long-term modulation of galactic cosmic-rays. For this study monthly cosmic-ray data from nine world-wide neutron monitor stations for the period 1975–1985 have been analysed. The empirical formula which has been used to compute the long-term cosmic-ray variations follows the observations fairly well.It is noteworthy that the residuals in the cosmic-ray intensity between that observed and that calculated by this empirical formula exhibits a still remaining short-term variation in all stations of 2.7 and 3.7 months. Possible interpretations of these observed periodicities related to galactic origin are given.  相似文献   

2.
An analysis of monthly data from nine world-wide neutron monitoring stations over the period 1965–1975 is carried out for the study of the long-term cosmic-ray modulation. In an attempt to gain insight into the relationships which exist between solar activity, high-speed solar wind streams and various terrestrial phenomena an empirical relation for the cosmic-ray modulation has been found. Accordingly the modulated cosmic-ray intensity is equal to the galactic cosmic-ray intensity corrected by a few appropriate solar, interplanetary and terrestrial activity indices which causes the disturbances in interplanetary space, multiplying with the corresponding time-lag of cosmic-ray intensity from each of these indices. This relation is well explained by a generalization of the Simpson solar wind model which has been proved by the spherically symmetric diffusion-convection theory.  相似文献   

3.
Long-term variations of galactic cosmic rays were compared with the behavior of various solar activity indices and heliospheric parameters during the current solar cycle. This study continues previous works where the cosmic-ray intensity for the solar cycles 20, 21, and 22 was well simulated from the linear combination of the sunspot number, the number of grouped solar flares, and the geomagnetic index A p. The application of this model to the current solar cycle characterized by many peculiarities and extreme solar events led us to study more empirical relations between solar-heliospheric variables, such as the interplanetary magnetic field, coronal mass ejections, and the tilt of the heliospheric current sheet, and cosmic-ray modulation. By analyzing monthly cosmic-ray data from the Neutron Monitor Stations of Oulu (cutoff rigidity 0.81 GV) and Moscow (2.42 GV) the contribution of these parameters in the ascending, maximum, and descending phases of the cycle was investigated and it is shown that a combination of these parameters reproduces the majority of the modulation potential variations during this cycle. The approach applied makes it possible to better describe the behavior of cosmic rays in the epochs of the solar maxima, which could not be done before. An extended study of the time profiles, the correlations, and the time lags of the cosmic-ray intensity against these parameters using the method of minimizing RMS over all the considered period 1996 – 2006 determines characteristic properties of this cycle as being an odd cycle. Moreover, the obtained hysteresis curves and a correlative analysis during the positive polarity (qA>0, where q is the particle charge) and during the negative polarity (qA<0) intervals of the cycle result in significantly different behavior between solar and heliospheric parameters. The time lag and the correlation coefficient of the cosmic-ray intensity are higher for the solar indices in comparison to the heliospheric ones. A similar behavior also appears in the case of the intervals with positive and negative polarity of the solar magnetic field.  相似文献   

4.
The global survey method (GSM) technique unites simultaneous ground-level observations of cosmic rays in different locations and allows us to obtain the main characteristics of cosmic-ray variations outside of the atmosphere and magnetosphere of Earth. This technique has been developed and applied in numerous studies over many years by the Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMIRAN). We here describe the IZMIRAN version of the GSM in detail. With this technique, the hourly data of the world-wide neutron-monitor network from July 1957 until December 2016 were processed, and further processing is enabled upon the receipt of new data. The result is a database of homogeneous and continuous hourly characteristics of the density variations (an isotropic part of the intensity) and the 3D vector of the cosmic-ray anisotropy. It includes all of the effects that could be identified in galactic cosmic-ray variations that were caused by large-scale disturbances of the interplanetary medium in more than 50 years. These results in turn became the basis for a database on Forbush effects and interplanetary disturbances. This database allows correlating various space-environment parameters (the characteristics of the Sun, the solar wind, et cetera) with cosmic-ray parameters and studying their interrelations. We also present features of the coupling coefficients for different neutron monitors that enable us to make a connection from ground-level measurements to primary cosmic-ray variations outside the atmosphere and the magnetosphere. We discuss the strengths and weaknesses of the current version of the GSM as well as further possible developments and improvements. The method developed allows us to minimize the problems of the neutron-monitor network, which are typical for experimental physics, and to considerably enhance its advantages.  相似文献   

5.
We have examined the characteristics of the unusual worldwide fluctuations of cosmic-ray intensity on July 14–15, 1961, using corrected hourly data from global network of neutron and meson detectors. A careful study of the associated solar, interplanetary and geophysical phenomena has also been made. These investigations lead us to recognise the dominant role played by the Interplanetary Magnetic Field Inhomogeneities (IMFI) in modulating galactic cosmic-ray flux received at earth during recovery from Forbush decreases. When approaching the earth from the sunward side the IMFI's scatter galactic cosmic rays diffusing towards solar equatorial plane from higher heliolatitudes on to the interplanetary magnetic-field lines which connect to earth. When propagating past the orbit of the earth, the IMFI's set up a flow of scattered galactic cosmic-ray flux in the general direction of the earth. Most of these cosmic rays probably sink in the sun. Transient Spatial Anisotropies are thus set up in the vicinity of the earth in cosmic-ray intensity as viewed by ground-based detectors. Depending upon the relative position of the region abounding in IMFI's and the earth, these short-lived anisotropies appear either from sunward or antisun directions. Sometimes the configuration is such as to set up bidirectional anisotropies. Implications of this broad picture are discussed qualitatively.Our analysis also enables us to place constraint on the mechanism responsible for heating the solar corona over active regions, which we feel must be taken into account by all theoretical models on the subject.This research is supported in part by U.S. Air Force Office of Scientific Research under grant AF-AFOSR-319-66. The paper was presented at the Tenth International Conference on Cosmic Rays, Calgary, June 18–29, 1967.Now at the Dept. of Physics and Astronomy, University of New Mexico, Albuquerque, N.M., U.S.A.  相似文献   

6.
Exarhos  G.  Moussas  X. 《Solar physics》2001,200(1-2):283-292
We show that the temporal variations of the integrated galactic cosmic-ray intensity at neutron monitor energies (approximately above 3 GeV) can be reproduced applying a semi-empirical 1-D diffusion-convection model for the cosmic-ray transport in interplanetary space. We divide the interplanetary region into `magnetic shells' and find the relative reduction that each shell causes to the cosmic-ray intensity. Then the cosmic-ray intensity at the Earth is reproduced by the successive influence of all shells between the Earth and the heliospheric termination shock. We find that the position of the termination shock does not significantly affect the cosmic-ray intensity although there are some differences between the results for a constant and a variable termination shock radius. We also reproduce the cosmic-ray intensity applying the analytical solution of the force-field approximation (Perko, 1987) and find that the results cannot fit the observed data. Our results are compared with the Climax (geomagnetic cut-off 3 GV) and Huancayo (geomagnetic cut-off 13 GV) neutron monitor measurements for almost two solar cycles (1976–1996).  相似文献   

7.
Ogurtsov  M.G.  Jungner  H.  Kocharov  G.E.  Lindholm  M.  Eronen  M.  Nagovitsyn  Yu.A. 《Solar physics》2003,218(1-2):345-357
Bidecadal fluctuations in terrestrial climate were analyzed. It was shown that this variability might arise if Earth's climate reacts to galactic cosmic-ray intensity, integrated over its full quasi-11-year cycle. It was further shown that this integral effect should also lead to an effective link between climate and the duration of the quasi-11-year cycle in cosmic ray flux. That, in turn, must result in appearance of some connection between climate and the length of the solar cycle, which is currently a topic of active debate. Analyses of temperature proxies, obtained for northern Fennoscandia, confirmed the connection of the climate in this region and the length of the cycle in galactic cosmic-ray intensity. Decadal and bidecadal variability of integrated cosmic-ray flux was quantitatively estimated.  相似文献   

8.
We analyze and compare the geomagnetic and galactic cosmic-ray (GCR) response of selected solar events, particularly the campaign events of the group International Study of Earth-affecting Solar Transients (ISEST) of the program Variability of the Sun and Its Terrestrial Impact (VarSITI). These selected events correspond to Solar Cycle 24, and we identified various of their features during their near-Earth passage. We evaluated the hourly data of geomagnetic indices and ground-based neutron monitors and the concurrent data of interplanetary plasma and field parameters. We recognized distinct features of these events and solar wind parameters when the geomagnetic disturbance was at its peak and when the cosmic-ray intensity was most affected. We also discuss the similarities and differences in the geoeffectiveness and GCR response of the solar and interplanetary structures in the light of plasma and field variations and physical mechanism(s), which play a crucial role in influencing the geomagnetic activity and GCR intensity.  相似文献   

9.
It is well known that both the galactic and anomalous cosmic rays show positive intensity gradients in the outer heliosphere which are connected with corresponding pressure gradients. Due to an efficient dynamical coupling between the solar wind plasma and these highly energetic media by means of convected MHD turbulences, there exists a mutual interaction between these media. As one consequence of this scenario the enforced pressure gradients influence the distant solar wind expansion. Here we concentrate in our theoretical study on the interaction of the solar wind only with the anomalous cosmic-ray component. We use the standard two-fluid model in which the cosmic-ray fluid modifies the solar wind flow via the cosmic-ray pressure gradient. Then we derive numerical solutions in the following steps: first we calculate an aspherical pressure distribution for the anomalous cosmic rays, describing their diffusion in an unperturbed radial solar wind. Second, we then consider the perturbation of the solar wind flow due to these induced anomalous cosmic-ray pressure gradients. Within this context we especially take account of the action of a non-spherical geometry of the heliospheric shock which may lead to pronounced upwinddownwind asymmetries in the pressures and thereby in the resulting solar wind flows. As we can show in our model, which fits the available observational data, radial decelerations of the distant solar wind by between 5 to 11% are to be expected, however, the deviations of the bulk solar wind flow from the radialdirections are only slightly pronounced.  相似文献   

10.
STORINI  M.  PASE  S.  SÝKORA  J.  PARISI  M. 《Solar physics》1997,172(1-2):317-325
The long-term modulation of galactic cosmic rays is investigated from 1957 up to 1992 analysing the dynamic and the quasi-stationary components, separately. It has been found that the dynamic component is characterized by the presence of two peaks at the maximum phase of each solar activity cycle. We infer that the time interval between the two peaks corresponds to a period (well-related to the polar heliomagnetic reversal) in which somewhat decreased activity occurs for intense and long-lasting solar events. In fact, a contemporary dip in the magnetic energy released from the Sun was observed, in agreement with the suggested double maximum displayed by the basic features of the 11-year solar-activity cycle (Gnevyshev, 1977, and references therein). Moreover, the dynamic component of cosmic-ray modulation often shows a multi-structured profile in both peaks of activity, fairly well-connected with the pattern of the green corona brightness. On the other hand, analysing the quasi-stationary long-term trend of cosmic-ray intensity we pick out a good relationship between periods of enhanced cosmic-ray modulation and the area expansion of coronal intensity levels. The relevance of our results for solar-terrestrial forecasting is underlined.  相似文献   

11.
Application of new statistical techniques to time series allow the investigation of cosmic-ray intensity variation in the periodicity range of 1 to 10 years. We can put significant levels to the existence of these oscillations and define their character as quasi-periodic and/or recurrent. Correlations between cosmic-ray intensity variations and solar activity changes during 1944–1979 are investigated. The two-year variation in cosmic rays is observed to be variable both in amplitude and phase, and not correlated with sunspot cyclic variations; but seems to depend on the magnetic polarity of the interplanetary medium. No significant evidence for the existence of longer period variations is obtained.  相似文献   

12.
The correlation between the long-term intensity variations of cosmic rays at neutron monitor energies and the LDE index measure of solar flares with long-lasting soft X-ray emissions is reported. Three subsequent solar cycles, 20–22, are taken into account and half-monthly data are analyzed. Possible explanation of this correlation is discussed in terms of the recent concepts of cosmic-ray modulation, in particular with merged interaction regions affecting the cosmic-ray intensity.  相似文献   

13.
We study the relationship of the 27-day variations of the galactic cosmic ray intensity with similar variations of the solar wind velocity and the interplanetary magnetic field based on observational data for the Bartels rotation period # 2379 of 23 November 2007 – 19 December 2007. We develop a three-dimensional (3-D) model of the 27-day variation of galactic cosmic ray intensity based on the heliolongitudinally dependent solar wind velocity. A consistent, divergence-free interplanetary magnetic field is derived by solving Maxwell’s equations with a heliolongitudinally dependent 27-day variation of the solar wind velocity reproducing in situ observations. We consider two types of 3-D models of the 27-day variation of galactic cosmic ray intensity, i) with a plane heliospheric neutral sheet, and ii) with the sector structure of the interplanetary magnetic field. The theoretical calculations show that the sector structure does not significantly influence the 27-day variation of galactic cosmic ray intensity, as had been shown before, based on observational data. Furthermore, good agreement is found between the time profiles of the theoretically expected and experimentally obtained first harmonic waves of the 27-day variation of the galactic cosmic ray intensity (with a correlation coefficient of 0.98±0.02). The expected 27-day variation of the galactic cosmic ray intensity is inversely correlated with the modulation parameter ζ (with a correlation coefficient of −0.91±0.05), which is proportional to the product of the solar wind velocity V and the strength of the interplanetary magnetic field B (ζ∼VB). The high anticorrelation between these quantities indicates that the predicted 27-day variation of the galactic cosmic ray intensity mainly is caused by this basic modulation effect.  相似文献   

14.
The best correlation coefficient between the monthly cosmic-ray intensity of the Inuvik Station and various kinds of solar, interplanetary, and geophysical parameters has been found. It is calculated for different time-lags of cosmic-ray intensity with respect to these parameters. The maximum of these coefficients lead us to a useful empirical model for the 11-year cosmic-ray modulation.  相似文献   

15.
We study solar modulation of galactic cosmic rays (GCRs) during the deep solar minimum, including the declining phase, of solar cycle 23 and compare the results of this unusual period with the results obtained during similar phases of the previous solar cycles 20, 21, and 22. These periods consist of two epochs each of negative and positive polarities of the heliospheric magnetic field from the north polar region of the Sun. In addition to cosmic-ray data, we utilize simultaneous solar and interplanetary plasma/field data including the tilt angle of the heliospheric current sheet. We study the relation between simultaneous variations in cosmic ray intensity and solar/interplanetary parameters during the declining and the minimum phases of cycle 23. We compare these relations with those obtained for the same phases in the three previous solar cycles. We observe certain peculiar features in cosmic ray modulation during the minimum of solar cycle 23 including the record high GCR intensity. We find, during this unusual minimum, that the correlation of GCR intensity is poor with sunspot number (correlation coefficient R=?0.41), better with interplanetary magnetic field (R=?0.66), still better with solar wind velocity (R=?0.80) and much better with the tilt angle of the heliospheric current sheet (R=?0.92). In our view, it is not the diffusion or the drift alone, but the solar wind convection that is the most likely additional effect responsible for the record high GCR intensity observed during the deep minimum of solar cycle 23.  相似文献   

16.
Cosmic rays are a sample of solar, galactic and extragalactic matter. Their origin and properties are one of the most intriguing question in modern astrophysics. The most energetic events and active objects in the Universe: supernovae explosion, pulsars, relativistic jets, active galactic nuclei, have been proposed as sources of cosmic rays although unambiguous evidences have still to be found. Electrons, while comprising ∼1% of the cosmic radiation, have unique features providing important information regarding the origin and propagation of cosmic rays in the Galaxy that is not accessible from the study of the cosmic-ray nuclear components due to their differing energy-loss processes. In this paper we will analyse, discussing the experimental uncertainties and challenges, the most recent measurements on cosmic-ray nuclei and, in particular, electrons with energies from tens of GeV into the TeV region.  相似文献   

17.
The diurnal anisotropy of cosmic-ray intensity observed over the period 1970–1977 has been analysed using neutron-monitor data of the Athens and Deep River stations. Our results indicate that the time of the maximum of diurnal variation shows a remarkable systematic shift towards earlier hours than normally beginning in 1971. This phase shift continued until 1976, the solar activity minimum, except for a sudden shift to a later hour for one year, in 1974, the secondary maximum of solar activity.This behavior of the diurnal time of maximum has been shown to be consistent with the convective- diffusive mechanism which relates the solar diurnal anisotropy of cosmic-rays to the dynamics of the solar wind and of the interplanetary magnetic field. Once again we have confirmed the field-aligned direction of the diffusive vector independently of the interplanetary magnetic field polarity. It is also noteworthy that the diurnal phase may follow in time the variations of the size of the polar coronal holes. All these are in agreement with the drift motions of cosmic-ray particles in the interplanetarty magnetic field during this time period.  相似文献   

18.
Based on the monthly sunspot numbers (SSNs), the solar-flare index (SFI), grouped solar flares (GSFs), the tilt angle of heliospheric current sheet (HCS), and cosmic-ray intensity (CRI) for Solar Cycles 21?–?24, a detailed correlation study has been performed using the cycle-wise average correlation (with and without time lag) method as well as by the “running cross-correlation” method. It is found that the slope of regression lines between SSN and SFI, as well as between SSN and GSF, is continuously decreasing from Solar Cycle 21 to 24. The length of regression lines has significantly decreased during Cycles 23 and 24 in comparison to Cycles 21 and 22. The cross-correlation coefficient (without time lag) between SSN–CRI, SFI–CRI, and GSF–CRI has been found to be almost the same during Cycles 21 and 22, while during Cycles 23 and 24 it is significantly higher between SSN–CRI and HCS–CRI than for SFI–CRI and GSF–CRI. Considering time lags of 1 to 20 months, the maximum correlation coefficient (negative) amongst all of the sets of solar parameters is observed with almost the same time lags during Cycles 21?–?23, whereas exceptional behaviour of the time lag has been observed during Cycle 24, as the correlation coefficient attains its maximum value with two time lags (four and ten months) in the case of the SSN–CRI relationship. A remarkably large time lag (22 months) between HCS and CRI has been observed during the odd-numbered Cycle 21, whereas during another odd cycle, Cycle 23, the lag is small (nine months) in comparison to that for other solar/flare parameters (13?–?15 months). On the other hand, the time lag between SSN–CRI and HCS–CRI has been found to be almost the same during even-numbered Solar Cycles 22 and 24. A similar analysis has been performed between SFI and CRI, and it is found that the correlation coefficient is maximum at zero time lag during the present solar cycle. The GSFs have shown better maximum correlation with CRI as compared to SFI during Cycles 21 to 23, indicating that GSF could also be used as a significant solar parameter to study the cosmic-ray modulation. Furthermore, the running cross-correlation coefficient between SSN–CRI and HCS–CRI, as well as between solar-flare activity parameters (SFI and GSF) and CRI is observed to be strong during the ascending and descending phases of solar cycles. The level of cosmic-ray modulation during the period of investigation shows the appropriateness of different parameters in different cycles, and even during the different phases of a particular solar cycle. We have also studied the galactic cosmic-ray modulation in relation to combined solar and heliospheric parameters using the empirical model suggested by Paouris et al. (Solar Phys.280, 255, 2012). The proposed model for the calculation of the modulated cosmic-ray intensity obtained from the combination of solar and heliospheric parameter gives a very satisfactory value of standard deviation as well as \(R^{2}\) (the coefficient of determination) for Solar Cycles 21?–?24.  相似文献   

19.
Numerical solutions of the cosmic-ray equation of transport within the solar cavity and including the effects of diffusion, convection, and energy losses due to adiabatic deceleration, have been used to reproduce the modulation of galactic electrons, protons and helium nuclei observed during the period 1965–1970. Kinetic energies between 10 and 104 MeV/nucleon are considered. Computed and observed spectra (where data is available) are given for the years 1965, 1968, 1969 and 1970 together with the diffusion coefficients. These diffusion coefficients are assumed to be of separable form in rigidity and radial dependence, and are consistent with the available magneticfield power spectra. The force-field solutions are given for these diffusion coefficients and galactic spectra and compared with the numerical solutions. For each of the above years we have (i) determined the radial density gradients near Earth; (ii) found the mean energy losses suffered by galactic particles as they diffuse to the vicinity of the Earth's orbit; (iii) shown quantitatively the exclusion of low-energy galactic protons and helium nuclei from near Earth by convective effects; and (iv), for nuclei of a given energy near Earth, obtained their distribution in energy before entering the solar cavity. It is shown that the energy losses and convection lead to near-Earth nuclei spectra at kinetic energies ≤100 MeV/nucleon in which the differential intensity is proportional to the kinetic energy with little dependence on the form of the galactic spectrum. This dependence is in agreement with the observed spectra of all species of atomic nuclei and we argue that this provides strong observational evidence for the presence of energy losses in the propagation process; and for the exclusion of low energy galactic nuclei from near Earth.  相似文献   

20.
The cosmic-ray intensity during the 18th and 19th solar cycles is examined in the light of Gnevyshev's suggestion of the presence of two maxima in each solar cycle. The 18th solar cycle (1944–54) has two prominent and widely separated cosmic-ray minima corresponding in phase with the two maxima in Bartel's Ap index. For the 19th solar cycle the existence of two minima is less prominent than for the 18th solar cycle. The maximum at higher solar latitudes is more effective in reducing cosmic-ray intensity than the maximum at the lower latitudes. Ap, however, has a larger maximum during the lower latitude solar maximum. A relation between Ap and cosmic-ray intensity is obtained. This relationship is shown to be consistent with Parker's solar-wind theory of the modulation of cosmic rays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号