首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The linear stability of the inner collinear equilibrium point of the photogravitational elliptic restricted three-body problem is examined and the stability regions are determined in the space of the parameters of mass, eccentricity and radiation pressure. The case of equal radiation factors of the two primaries is considered and the full range of values of the common radiation factor is explored, from the caseq 1 =q 2 =q = 1/8 at which the triangular equilibria disappear by coalescing on the rotating axis of the primaries transferring their stability to the collinear point, down toq = 0 at which value the stability regions in theµ - e plane disappear by shrinking down to zero size. It is found that radiation pressure exerts a significant influence on the stability regions. For certain intervals of radiation values these regions become qualitatively different from the gravitational case as well as the solar system case. They evolve as in the case of the triangular equilibrium point considered in a previous paper. There exist values of the common radiation factor, in the range considered, for which the collinear equilibrium point is stable for the entire range of mass distribution among the primaries and for large eccentricities of their orbits.  相似文献   

2.
All the families of planar symmetric simple-periodic orbits of the photogravitational restricted plane circular three-body problem, are determined numerically in the case when the primaries are of equal mass and radiate with equal radiation factors (q 1=q2=q). We obtain a global view of the possible patterns of periodic three-body motion while the full range of values of the common radiation factor is explored, from the gravitational case (q=1) down to near the critical value at which the triangular equilibria disappear by coalescing with the inner equilibrium pointL 1 on the rotating axis of the primaries. It is found that for large deviations of its value from the gravitational case the radiation factorq can have a strong effect on the structure of the families.  相似文献   

3.
We study numerically the photogravitational version of the problem of four bodies, where an infinitesimal particle is moving under the Newtonian gravitational attraction of three bodies which are finite, moving in circles around their center of mass fixed at the origin of the coordinate system, according to the solution of Lagrange where they are always at the vertices of an equilateral triangle. The fourth body does not affect the motion of the three bodies (primaries). We consider that the primary body m 1 is dominant and is a source of radiation while the other two small primaries m 2 and m 3 are equal. In this case (photogravitational) we examine the linear stability of the Lagrange triangle solution. The allowed regions of motion as determined by the zero-velocity surface and corresponding equipotential curves, as well as the positions of the equilibrium points on the orbital plane are given. The existence and the number of the collinear and the non-collinear equilibrium points of the problem depends on the mass parameters of the primaries and the radiation factor q 1. Critical masses m 3 and radiation q 1 associated with the existence and the number of the equilibrium points are given. The stability of the relative equilibrium solutions in all cases are also studied. In the last section we investigate the existence and location of the out of orbital plane equilibrium points of the problem. We found that such critical points exist. These points lie in the (x,z) plane in symmetrical positions with respect to (x,y) plane. The stability of these points are also examined.  相似文献   

4.
This paper investigates the combined effect of small perturbations ε,ε′ in the Coriolis and centrifugal forces, radiation pressure q i , and changing oblateness of the primaries A i (t) (i=1,2) on the stability of equilibrium points in the restricted three body problem in which the primaries is a supergiant eclipsing binary system which consists of a pair of bright oblate stars having the appearance of a giant peanut in space and their masses assumed to vary with time in the absence of reactive forces. The equations of motion are derived and the equilibrium points are obtained. For the autonomized system, it is seen that there are more than a pair of the triangular points as κ→∞; κ being the arbitrary sum of the masses of the primaries. In the case of the collinear points, two additional equilibrium points exist on the line joining the primaries when simultaneously κ+ε′<0 and both primaries are oblate, i.e., 0<α i ?1. So there are five collinear equilibrium points in this case. Two non-planar equilibrium points exist for κ>1. Hence, there are at least nine equilibrium points of the system. The stability of these points is explored analytically and numerically. It is seen that the collinear and triangular points are stable with respect to certain conditions controlled by κ while the non-planar equilibrium points are unstable.  相似文献   

5.
We study numerically the asymptotic homoclinic and heteroclinic orbits associated with the triangular equilibrium points L 4 and L 5, in the gravitational and the photogravitational restricted plane circular three-body problem. The invariant stable-unstable manifolds associated to these critical points, are also presented. Hundreds of asymptotic orbits for equal mass of the primaries and for various values of the radiation pressure are computed and the most interesting of them are illustrated. In the Copenhagen case, which the problem is symmetric with respect to the x- and y-axis, we found and present non-symmetric heteroclinic asymptotic orbits. So pairs of heteroclinic connections (from L 4 to L 5 and vice versa) form non-symmetric heteroclinic cycles. The termination orbits (a combination of two asymptotic orbits) of all the simple families of symmetric periodic orbits, in the Copenhagen case, are illustrated.  相似文献   

6.
The main aim of this paper is to study the existence of resonance and linear stability of the triangular equilibrium points of the planar elliptical restricted three body problem considering the photo gravitational effect of both the primaries in circular and elliptical case. A practical application of this case could be the study of the dynamical system around the binary systems. For this the Hamiltonian function, convergent in nature and describing the motion of the infinitesimal body in the neighborhood of the triangular equilibrium solutions is derived. Also, the Hamiltonian for the system is expanded in powers of the generalized components of momenta. Further, canonical transformation has also been used to study the stability of the triangular equilibrium points. The study primarily focuses on establishing the relation for determining the range of stability at and near the resonance frequency ω 2=1/2 around the binary systems using simulation technique. It is observed that the parametric resonance is only possible at the resonance frequency ω 2=1/2 in both circular and elliptical cases.  相似文献   

7.
We have examined the effects of oblateness up to J 4 of the less massive primary and gravitational potential from a circum-binary belt on the linear stability of triangular equilibrium points in the circular restricted three-body problem, when the more massive primary emits electromagnetic radiation impinging on the other bodies of the system. Using analytical and numerical methods, we have found the triangular equilibrium points and examined their linear stability. The triangular equilibrium points move towards the line joining the primaries in the presence of any of these perturbations, except in the presence of oblateness up to J 4 where the points move away from the line joining the primaries. It is observed that the triangular points are stable for 0 < μ < μ c and unstable for \(\mu_{\mathrm{c}} \le \mu \le \frac {1}{2},\) where μ c is the critical mass ratio affected by the oblateness up to J 4 of the less massive primary, electromagnetic radiation of the more massive primary and potential from the belt, all of which have destabilizing tendencies, except the coefficient J4 and the potential from the belt. A practical application of this model could be the study of motion of a dust particle near a radiating star and an oblate body surrounded by a belt.  相似文献   

8.
The existence and stability of a test particle around the equilibrium points in the restricted three-body problem is generalized to include the effect of variations in oblateness of the first primary, small perturbations ϵ and ϵ′ given in the Coriolis and centrifugal forces α and β respectively, and radiation pressure of the second primary; in the case when the primaries vary their masses with time in accordance with the combined Meshcherskii law. For the autonomized system, we use a numerical evidence to compute the positions of the collinear points L 2κ , which exist for 0<κ<∞, where κ is a constant of a particular integral of the Gylden-Meshcherskii problem; oblateness of the first primary; radiation pressure of the second primary; the mass parameter ν and small perturbation in the centrifugal force. Real out of plane equilibrium points exist only for κ>1, provided the abscissae x < \fracn(k-1)b\xi<\frac{\nu(\kappa-1)}{\beta}. In the case of the triangular points, it is seen that these points exist for ϵ′<κ<∞ and are affected by the oblateness term, radiation pressure and the mass parameter. The linear stability of these equilibrium points is examined. It is seen that the collinear points L 2κ are stable for very small κ and the involved parameters, while the out of plane equilibrium points are unstable. The conditional stability of the triangular points depends on all the system parameters. Further, it is seen in the case of the triangular points, that the stabilizing or destabilizing behavior of the oblateness coefficient is controlled by κ, while those of the small perturbations depends on κ and whether these perturbations are positive or negative. However, the destabilizing behavior of the radiation pressure remains unaltered but grows weak or strong with increase or decrease in κ. This study reveals that oblateness coefficient can exhibit a stabilizing tendency in a certain range of κ, as against the findings of the RTBP with constant masses. Interestingly, in the region of stable motion, these parameters are void for k = \frac43\kappa=\frac{4}{3}. The decrease, increase or non existence in the region of stability of the triangular points depends on κ, oblateness of the first primary, small perturbations and the radiation pressure of the second body, as it is seen that the increasing region of stability becomes decreasing, while the decreasing region becomes increasing due to the inclusion of oblateness of the first primary.  相似文献   

9.
This paper investigates the stability of equilibrium points in the restricted three-body problem, in which the masses of the luminous primaries vary isotropically in accordance with the unified Meshcherskii law, and their motion takes place within the framework of the Gylden–Meshcherskii problem. For the autonomized system, it is found that collinear and coplanar points are unstable, while the triangular points are conditionally stable. It is also observed that, in the triangular case, the presence of a constant κ, of a particular integral of the Gylden–Meshcherskii problem, makes the destabilizing tendency of the radiation pressures strong. The stability of equilibrium points varying with time is tested using the Lyapunov Characteristic Numbers (LCN). It is seen that the range of stability or instability depends on the parameter κ. The motion around the equilibrium points L i (i=1,2,…,7) for the restricted three-body problem with variable masses is in general unstable.  相似文献   

10.
We study numerically the asymptotic homoclinic and heteroclinic orbits around the hyperbolic Lyapunov periodic orbits which emanate from Euler's critical points L 1 and L 2, in the photogravitational restricted plane circular three-body problem. The invariant stable-unstable manifolds associated to these Lyapunov orbits, are also presented. Poincaré surface of sections of these manifolds on appropriate planes and several homoclinic and heteroclinic orbits for the gravitational case as well as for varying radiation factor q 1, are displayed. Homoclinic-homoclinic and homoclinic-heteroclinic-homoclinic chains which link the interior with the exterior Hill's regions, are illustrated. We adopt the Sun-Jupiter system and assume that only the larger primary radiates. It is found that for small deviations of its value from the gravitational case (q 1 = 1), the radiation pressure exerts a significant impact on the Hill's regions and on these asymptotic orbits.  相似文献   

11.
This paper investigates the stability of triangular equilibrium points (L 4,5) in the elliptic restricted three-body problem (ER3BP), when both oblate primaries emit light energy simultaneously. The positions of the triangular points are seen to shift away from the line joining the primaries than in the classical case on account of the introduction of the eccentricity, semi-major axis, radiation and oblateness factors of both primaries. This is shown for the binary systems Achird, Luyten 726-8, Kruger 60, Alpha Centauri AB and Xi Bootis. We found that motion around these points is conditionally stable with respect to the parameters involved in the system dynamics. The region of stability increases and decreases with variability in eccentricity, oblateness and radiation pressures.  相似文献   

12.
We consider the modified restricted three body problem with power-law density profile of disk, which rotates around the center of mass of the system with perturbed mean motion. Using analytical and numerical methods, we have found equilibrium points and examined their linear stability. We have also found the zero velocity surface for the present model. In addition to five equilibrium points there exists a new equilibrium point on the line joining the two primaries. It is found that L 1 and L 3 are stable for some values of inner and outer radius of the disk while other collinear points are unstable, but L 4 is conditionally stable for mass ratio less than that of Routh’s critical value. Lastly, we have studied the effects of radiation pressure, oblateness and mass of the disk on the motion and stability of equilibrium points.  相似文献   

13.
The equilibrium points and their linear stability has been discussed in the generalized photogravitational Chermnykh’s problem. The bigger primary is being considered as a source of radiation and small primary as an oblate spheroid. The effect of radiation pressure has been discussed numerically. The collinear points are linearly unstable and triangular points are stable in the sense of Lyapunov stability provided μ<μ Routh =0.0385201. The effect of gravitational potential from the belt is also examined. The mathematical properties of this system are different from the classical restricted three body problem.  相似文献   

14.
We study numerically the restricted five-body problem when some or all the primary bodies are sources of radiation. The allowed regions of motion as determined by the zero-velocity surface and corresponding equipotential curves, as well as the positions of the equilibrium points are given. We found that the number of the collinear equilibrium points of the problem depends on the mass parameter β and the radiation factors q i , i=0,…,3. The stability of the equilibrium points are also studied. Critical masses associated with the number of the equilibrium points and their stability are given. The network of the families of simple symmetric periodic orbits, vertical critical periodic solutions and the corresponding bifurcation three-dimensional families when the mass parameter β and the radiation factors q i vary are illustrated. Series, with respect to the mass (and to the radiation) parameter, of critical periodic orbits are calculated.  相似文献   

15.
In this paper we have studied the locations and stability of the Lagrangian equilibrium points in the restricted three-body problem under the assumption that both the primaries are finite straight segments. We have found that the triangular equilibrium points are conditional stable for 0<μ<μ c , and unstable in the range μ c <μ≤1/2, where μ is the mass ratio. The critical mass ratio μ c depends on the lengths of the segments and it is observed that the range of μ c increases when compared with the classical case. The collinear equilibrium points are unstable for all values of μ. We have also studied the regions of motion of the infinitesimal mass. It has been observed that the Jacobian constant decreases when compared with the classical restricted three-body problem for a fixed value of μ and lengths l 1 and l 2 of the segments. Beside this we have found the numerical values for the position of the collinear and triangular equilibrium points in the case of some asteroids systems: (i) 216 Kleopatra-951 Gaspara, (ii) 9 Metis-433 Eros, (iii) 22 Kalliope-243 Ida and checked the linear stability of stationary solutions of these asteroids systems.  相似文献   

16.
The non-linear stability of the triangular equilibrium point L 4 in the generalized restricted three-body problem has been examined. The problem is generalized in the sense that the infinitesimal body and one of the primaries have been taken as oblate spheroids. It is found that the triangular equilibrium point is stable in the range of linear stability except for three mass ratios.  相似文献   

17.
The aim of the paper is to study the geometry of the Roche curvilinear coordinates (, , ) in the photogravitational circular restricted three-body problem, with varying radiation pressure, and special attention is given to the geometry of zero-velocity curves specified by the coordinate. The radiation pressure exerted by the primary bodies on the infinitesimal third body is considered the same (q 1 =q 2), and the primaries are taken to have equal masses (m 1 =m 2). The full range of values of the common radiation factor is explored, from the valueq 1 =q 2 = 1 (the gravitational three-body problem) down toq 1 =q 2 0. It is found that radiation has a strong influence on the geometry of the Roche coordinates and the zero-velocity curves.  相似文献   

18.
This paper studies the motion of an infinitesimal mass in the framework of the restricted three-body problem (R3BP) under the assumption that the primaries of the system are radiating-oblate spheroids, enclosed by a circular cluster of material points. It examines the effects of radiation and oblateness up to J 4 of the primaries and the potential created by the circular cluster, on the linear stability of the liberation locations of the infinitesimal mass. The liberation points are found to be stable for 0<μ<μ c and unstable for $\mu_{c}\le\mu\le\frac{1}{2}$ , where μ c is the critical mass value depending on terms which involve parameters that characterize the oblateness, radiation forces and the circular cluster of material points. The oblateness up to J 4 of the primaries and the gravitational potential from the circular cluster of material points have stabilizing propensities, while the radiation of the primaries and the oblateness up to J 2 of the primaries have destabilizing tendencies. The combined effect of these perturbations on the stability of the triangular liberation points is that, it has stabilizing propensity.  相似文献   

19.
We have studied the stability of location of various equilibrium points of a passive micron size particle in the field of radiating binary stellar system within the framework of circular restricted three body problem. Influence of radial radiation pressure and Poynting-Robertson drag (PR-drag) on the equilibrium points and their stability in the binary stellar systems RW-Monocerotis and Krüger-60 has been studied. It is shown that both collinear and off axis equilibrium points are linearly unstable for increasing value of β 1 (ratio of radiation to gravitational force of the massive component) in presence of PR-drag for the binary systems. Further we find that out of plane equilibrium points (L i , i=6,7) may exists for range of values of β 1>1 for these binary systems in the presence of PR-drag. Our linear stability analysis shows that the motion near the equilibrium points L 6,7 of the binary systems is unstable both in the absence and presence of PR-drag.  相似文献   

20.
We have studied a modified version of the classical restricted three-body problem (CR3BP) where both primaries are considered as oblate spheroids and are surrounded by a homogeneous circular planar cluster of material points centered at the mass center of the system. In this dynamical model we have examined the effects of oblateness of both primaries up to zonal harmonic J 4; together with gravitational potential from the circular cluster of material points on the existence and linear stability of the triangular equilibrium points. It is found that, the triangular points are stable for 0<μ<μ c and unstable for $\mu_{c} \le \mu \le \frac{1}{2}$ , where μ c is the critical mass ratio affected by the oblateness up to J 4 of the primaries and potential from the circular cluster of material points. The coefficient J 4 has stabilizing tendency, while J 2 and the potential from the circular cluster of material points have destabilizing tendency. A practical application of this model could be the study of the motion of a dust particle near oblate bodies surrounded by a circular cluster of material points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号