首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cyclonic storms having maximum winds of 34 knots and above that had genesis in north Indian Ocean have been studied with respect to the eastward passage of Madden–Julian Oscillation (MJO). In the three decades (1979–2008), there were a total of 118 cyclones reported in which 96 formed in the region chosen (0–15oN, 60oE–100oE) for the study. Although the percentage of MJO days inducing cyclogenesis is small, it is found that tropical cyclone genesis preferentially occurred during the convective phase of MJO. This accounted for 44 cyclones of the total 54 cyclones (i.e., 81.5%) formed under MJO amplitude 1 and above. The study has shown that, when the enhanced convection of MJO is over the maritime continent and the adjoining eastern Indian Ocean, it creates the highest favorable environment for cyclogenesis in the Bay of Bengal. During this phase, westerlies at 850 hPa are strong in the equatorial region south of Bay of Bengal creating strong cyclonic vorticity in the lower troposphere along with the low vertical wind shear.  相似文献   

2.
3.
The investigation of the intrinsic properties of the annual tropical cyclone count over Atlantic, during 1870–2006, is herewith attempted. The motivation behind this exploration is to contribute to the current understanding about the dynamics of these disastrous events, as tropical cyclones create destructive impacts for people living around tropical areas. The analytical tool used is the detrended fluctuation analysis, and the exponent obtained reveals that the time series of the annual tropical cyclone count over Atlantic obeys the classical random walk (white noise). In other words, the number of tropical cyclones seems to exhibit neither persistent nor antipersistent behavior. The reliability of the lack of scaling dependence in the time series of the annual tropical cyclone count is confirmed, by applying error bounds statistics and studying the decay of the autocorrelation function (i.e., not rejected exponential decay) and the variability of local slopes (i.e., lack of constancy in a sufficient range). In addition, the fact that the series used is fractional Gaussian noise depicts that the results obtained are reliable, despite the fact that the available data set is still limited. The indication of a nearly white noise signal in the tropical cyclone count fluctuations does not suggest that the climate change phenomenon does not exist.  相似文献   

4.
Summary Tropical cyclone track prediction remains a vexing problem in meteorology, particularly for numerical weather prediction. While there has been significant improvement in forecast skill in recent years, errors in prognosis, particularly for recurving cyclones still remain unacceptably high. Consistent with track prediction being to a significant extent an initial value problem, there has been, in recent years, cogent evidence that, a combination of high resolution numerical modelling, the use of appropriate assimilation techniques and the exploitation of high spatial and temporal resolution observations can improve the accuracy of tropical cyclone forecasts.Before landfall, tropical cyclones have their genesis and move over the data-sparse tropical oceans. Here the prediction of their movement is an application for which remotely sensed data are quintessential. In this context, this paper examines the increasingly important contribution of cloud and water vapour motion vectors to tropical cyclone prediction and evaluates their import to accurate prediction in terms of both the numerical modelling characteristics and the data assimilation techniques employed.Overall, it is shown that cloud and water vapour drift winds have made a significant contribution to the tropical cyclone track forecasting problem when used with conventional intermittent assimilation techniques, such as 6-hourly cycling, and, more recently, with continuous assimilation techniques such as 3- and 4-dimensional variational assimilation. These continuous assimilation schemes appear to have the potential to use near continuous asynoptic wind data in the most effective way.With 3 Figures  相似文献   

5.
This paper investigates the main sources and features of the Mediterranean synoptic cyclones affecting the basin, using the cyclone tracks. The cyclones’ tracks are identified using sea level pressure (SLP) from the NCEP/NCAR reanalysis data for the period 1956–2013. The identified cyclones are classified into two categories: basin affected and basin non-affected. Most of the basin-affected (non-affected) cyclones are internal (external), i.e., generated inside (outside) the Mediterranean basin. This study reveals four (five) main sources of internal (external) cyclones. These four (five) main sources generated about 63.76% (57.25%) of the internal (external) cyclones. Seasonal analysis shows that most of the basin-affected internal (external) cyclones were generated in the winter (spring) season. The lowest number of cyclones were found in the summer. Moreover, the synoptic study of the atmospheric systems accompanied the highest- and lowest-generated years demonstrates that the deepening of the north Europe cyclones and the relative positions of Azores- and Siberian-high systems represent the important factors that influence the number of internal cyclones. Essential factors influencing the external cyclones are the strength of the maximum upper wind, Azores high, Siberian high, and orientations of their ridges.  相似文献   

6.
We compare two 28-year simulations performed with two versions of the Global Environmental Multiscale model run in variable-resolution mode. The two versions differ only by small differences in their radiation scheme. The most significant modification introduced is a reduction in the ice effective radius, which is observed to increase absorption of upwelling infrared radiation and increase temperature in the upper troposphere. The resulting change in vertical lapse rate is then observed to drive a resolution-dependent response of convection, which in turn modifies the zonal circulation and induces significant changes in simulated Atlantic tropical cyclone activity. The resulting change in vertical lapse rate and its implication in the context of anthropogenic climate change are discussed.  相似文献   

7.
Tropical cyclone activity in the North Atlantic Basin experiences great variability on intra-annual, interannual, and interdecadal timescales. George Cry found that TC rainfall presents an intra-seasonal pattern over the eastern USA, contributing up to 40% of total monthly rainfall. This study replicates much of what was done by Cry using a denser rain gauge network and more sophisticated techniques for analysis. Rainfall data for this study come from 717 stations from the Historical Climate Network covering 31 states to capture the tropical cyclone (TC) contribution in monthly and seasonal precipitation in the eastern USA. Results showed that September has the highest TC rainfall contribution and the coastal regions of North Carolina, Virginia, and Alabama receive more than 30% of monthly rainfall totals from TCs. Comparisons between 1931?C1960 and 1960?C2007 study periods show that the storm track density shifted slightly eastward, which explains some of differences between the two analyses.  相似文献   

8.
This paper describes the coupling between a mesoscale numerical weather prediction model, the Weather Research and Forecasting (WRF) model, and a Lagrangian Particle Dispersion Model, the Stochastic Time-Inverted Lagrangian Transport (STILT) model. The primary motivation for developing this coupled model has been to reduce transport errors in continental-scale top–down estimates of terrestrial greenhouse gas fluxes. Examples of the model’s application are shown here for backward trajectory computations originating at CO2 measurement sites in North America. Owing to its unique features, including meteorological realism and large support base, good mass conservation properties, and a realistic treatment of convection within STILT, the WRF–STILT model offers an attractive tool for a wide range of applications, including inverse flux estimates, flight planning, satellite validation, emergency response and source attribution, air quality, and planetary exploration.  相似文献   

9.
Considered are the contribution of managed forests in the Russian Federation to the climate change softening and the forecast of their carbon-depositing potential in the period till 2050 under different scenarios of the forest management. The sink of CO2 to managed forests is estimated using the flow balance method. The CBM-CFS3 model worked out in the Canadian Forestry Service is used for predicting the carbon budget. It is found out that managed forests absorb 473.8 Mt of CO2 per year. The carbon sink is caused by the reduction of the volume of the forest use and by the regeneration of cutover stands of previous years. Depending on the conditions of the forest use, by 2020 the CO2 sink to managed forests will amount to 466–632 Mt/year and will be able to compensate from 21 to 29% of industrial emissions of greenhouse gases. The carbon absorption by managed forests will decrease to 105–235 Mt/year by 2050. To maintain and increase the carbon-depositing potential of managed forests, the Russian Federation needs the development of the system of purposeful activities on strengthening the protection against forest fires and on the intensification of forest reproduction.  相似文献   

10.
11.
An evolution of the anomalous tropical storm is considered developed on April 29–May 4, 2008 over the Bay of Bengal. After the origination, it spread eastward through the Andaman Sea and reached the Myanmar coast. The analysis of formation and development of the tropical storm over the water area of the Bay of Bengal demonstrated that the sea level pressure at the center of this storm was rather high. Nevertheless, catastrophically large precipitation amount fell in Myanmar.  相似文献   

12.
The diurnal temperature range(DTR) has decreased dramatically in recent decades, but it is not yet obvious whether the extreme values of DTR have also reduced. Based on the daily maximum and minimum temperature data of 653 stations in China, a set of monthly indices of warm extremes, cold extremes, and DTR extremes in summer(June, July, August) and winter(December, January, February) were studied for spatial and temporal features during the period 1971–2013. Results show that the incidence of warm extremes has been increasing in most parts of China, while the opposite trend was found in the cold extremes for summer and winter months. Both increasing and decreasing trends of monthly DTR extremes were identified in China for both seasons. For high DTR extremes, decreasing trends were identified in northern China for both seasons, but increasing trends were found only in southern China in summer, while in winter, they were found in central China. Monthly low DTR extreme indices demonstrated consistent positive trends in summer and winter, while significant increases(P 0.05) were identified for only a few stations.  相似文献   

13.
In this review, instead of summarizing all the advances and progress achieved in stratospheric research, the main advances and new developments in stratosphere–troposphere coupling and stratospheric chemistry–climate interactions are summarized, and some outstanding issues and grand challenges are discussed. A consensus has been reached that the stratospheric state is an important source of improving the predictability of the troposphere on sub-seasonal to seasonal(S2S) time scales and beyond. H...  相似文献   

14.
This article reviews the advances in severe convection research and operation in China during the past several decades.The favorable synoptic situations for severe convective weather(SCW),the major organization modes of severe convective storms(SCSs),the favorable environmental conditions and characteristics of weather radar echoes and satellite images of SCW and SCSs,and the forecasting and nowcasting techniques of SCW,are emphasized.As a whole,Chinese scientists have achieved a profound understanding of the synoptic patterns,organization,and evolution characteristics of SCW from radar and satellite observations,and the mechanisms of different types of convective weather in China.Specifically,in-depth understanding of the multiple types of convection triggers,along with the environmental conditions,structures and organization modes,and maintenance mechanisms of supercell storms and squall lines,has been obtained.The organization modes and climatological distributions of mesoscale convective systems and different types of SCW,and the multiscale characteristics and formation mechanisms of large hail,tornadoes,downbursts,and damaging convective wind gusts based on radar,satellite,and lightning observations,as well as the related features from damage surveys,are elucidated.In terms of operational applications,different types of identification and mesoanalysis techniques,and various forecasting and nowcasting techniques using methods such as the"ingredients-based"and deep learning algorithms,have been developed.As a result,the performance of operational SCW forecasts in China has been significantly improved.  相似文献   

15.
This study starts by investigating the impact of the configuration of the variable-resolution atmospheric grid on tropical cyclone (TC) activity. The French atmospheric general circulation model ARPEGE, the grid of which is rotated and stretched over the North Atlantic basin, was used with prescribed sea surface temperatures. The study clearly shows that changing the position of the stretching pole strongly modifies the representation of TC activity over the North Atlantic basin. A pole in the centre of the North Atlantic basin provides the best representation of the TC activity for this region. In a second part, the variable-resolution climate model ARPEGE is coupled with the European oceanic global climate model NEMO in order to study the impact of ocean–atmosphere coupling on TC activity over the North Atlantic basin. Two pre-industrial runs, a coupled simulation and a simulation forced by the sea surface temperatures from the coupled one, are compared. The results show that the coupled simulation is more active in the Caribbean Sea and the Gulf of Mexico while the forced simulation is more active over eastern Florida and the eastern Atlantic. The difference in the distribution of TC activity is certainly linked with the location of TC genesis. In the forced simulation, tropical cyclogenesis is closer to the west African coast than in the coupled simulation. Moreover, the difference in TC activity over the eastern Atlantic seems to be related to two different mechanisms: the difference in African easterly wave activity over the west of Africa and the cooling produced, in the coupled simulation, by African easterly waves over the eastern Atlantic. Finally, the last part studies the impact of changing the frequency of ocean–atmosphere coupling on Atlantic TC activity. Increasing the frequency of coupling decreases the density of TC activity over the North Atlantic basin. However, it does not modify the spatial distribution of the TC activity. TC rainfalls are decreased by 8?% in the high frequency coupled run.  相似文献   

16.
17.
《Agricultural Meteorology》1982,26(3):195-200
Sugar content and beet yield data from variety trials as well as sugar content data from commerical farms were analysed to obtain weather-based models which could explain variations of tuber and sugar yield and be used for forecasting purposes. Both sugarbeet yield parameters were found to be related to the sums of thermal deviations from the optimum ranges. Quantitative relationships have been established and the precision of prediction and function of prediction time have been examined and presented. It is shown that most sugarbeet growing areas of Iran are too hot during August and September. Using commercial data, quantitative relationships were established such that using August and September temperatures, the thermal suitability of an area for maximum sugar content could be determined.  相似文献   

18.
19.
20.
The contribution of deforestation in Russia to the anthropogenic emission of carbon dioxide (CO2) in 1990–2013 is estimated using the methods of computational monitoring. It is found that since 1990 the area of deforestation and forest conversion to other land-use categories is equal to 628.4 x 103 ha. The respective CO2 emissions from deforestation in Russia for the whole analyzed period are estimated at 142200 kt CO2 with the average annual value of 5900 + 2270 kt CO2/year. The largest contribution to the total losses is made by the changes in soil carbon stock (41.6%) and biomass carbon losses (28.8%). CO2 emissions from deforestation make an insignificant contribution to the total anthropogenic CO2 emission in the country (0.2%). Among the CO2 sources in the land use, land-use change, and forestry sector (LULUCF), the emission from deforestation is the lowest with the average for 1990–2013 contribution of about 0.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号