首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Late Pleistocene morainic sequences around Dundalk Bay, eastern Ireland, were deposited in a variety of shallow, glaciomarine environments at the margins of a grounded ice lobe. The deposits are essentially ice-proximal delta-fan and -apron sequences and are divided into two lithofacies associations. Lithofacies association 1 occurs as a series of morainal banks formed at the southern margin of the ice lobe in a body of water open to influences from the Irish Sea. The morainal banks consist mainly of diamictic muds deposited from turbid plumes and by ice-rafting with minor occurrences of turbidites, cross-bedded gravels (subaqueous outwash) and massive boulder gravels (high-density debris flows). Lithofacies association 2 was deposited in a narrow arm of the sea at the north-eastern margin of the ice lobe. The deposits consist mainly of a series of coalescing, ice-proximal Gilbert-type fan deltas which are interbedded distally with tabular and lens-shaped subaqueous deposits. The latter are mainly ice-rafted diamictons, debris-flow deposits and subaqueous sands and gravels. Both lithofacies associations are draped by diamictons formed by a combination of rain-out, debris flow and traction-current activity. At a few localities the upper parts of the sequence have been sheared by minor oscillations of the ice sheet margin. These sequences form part of an extensive belt of glaciomarine deposits which border the drumlin swarms of east-central Ireland. Lithostratigraphic variability is partially related to the arrival of large volumes of debris at the ice lobe margin when the main lowland ice sheet surged during drumlin formation. Complex depositional continua of this type lack any major erosional breaks and should not be used either as climatic proxies or for stratigraphic correlations.  相似文献   

2.
Coastal exposures of Late Pleistocene sediments deposited after 19 000 yr BP near Dublin, Ireland, provide a window into the infill of a subglacially-cut tunnel valley. Exposures close to the steeply dipping bedrock wall of the valley show boulder gravels within multi-storey U-shaped channels cut and filled by subglacial meltwaters driven by a high hydrostatic head. Gravels are truncated by poorly sorted ice-proximal glaciomarine sediments that record the pumping of large volumes of subglacial debris along the tunnel valley to a tidewater ice sheet margin. The sedimentary succession is dominated by sediment gravity flow facies comprising interbedded diamict and massive, poorly sorted gravel facies interpreted as subaqueous debris flow deposits. Gravel beds show local inverse and normal coarse-tail graded facies recording the restricted development of turbulent flow. Sediment gravity flow deposits fill broad (<2 km) shallow (10 m) and overlapping channels. Penetrative deformation structures (e.g. dykes) are common at the base of channels. The same subglacially-eroded topography and glaciomarine infill stratigraphy can be identified on high resolution seismic profiles across nearly 600 km2 of the western Irish Sea. Tunnel valleys are argued to have been exposed to glaciomarine processes by the rapid retreat of a calving tidewater ice sheet margin in response to marine flooding caused by glacio-isostatic downwarping below the last British Ice Sheet. The facies associations described in this paper comprise an event stratigraphy that may be found on other glaciated continental shelves.  相似文献   

3.
The Late Devensian (<20 ka BP) glacial geology of the Irish Sea Basin (4000 km2) is an event stratigraphy recording the entry of marine waters into a glacio-isostatically-depressed basin, and the rapid retreat of the Irish Sea Glacier as a tidewater ice margin. Marine limits occur up to 140 m O.D. Across much of the central basin, the ice margin was uncoupled from its bed exposing a subglacially-scoured topography to glaciomarine processes. The Irish Sea Glacier was a major drainage conduit of the last British Ice Sheet; calving of the marine ice margin resulted in fast flow (surging) of ice streams recorded by drumlin fields around the northern basin margin and tunnel valleys. Rapid evacuation of the basin may have stranded large areas of dead ice in peripheral zones (e.g. Cheshire/Shropshire Lowlands) and initiated the collapse of the ice sheet.Thick wedges of ice-contact glaciomarine sediments were deposited during ice retreat as morainal bank complexes by successive tidewater ice margins stabilized at pinning points around the Irish Sea coast. Where morainal banks occur on the seaward side of drumlin swarms there is a clear sequential relationship between rapid ice loss from calving ice margins, the development of fast flowing ice streams, drumlinization and the pumping of subglacial sediment to tidewater. Raised delta complexes are locally associated with marine limits along the high relief coastal margins of Wales, east central Ireland, and the Lake District. Associated valley infill complexes record downslope resedimentation of heterogenous sediments into the marine environment during ice retreat. Co-eval offshore deposits are represented by well-stratified glaciomarine complexes that infill a subglacially-scoured topography that shows networks of tunnel valleys. Glaciomarine mud drapes occur well to the south of the maximum limit of grounded ice in the basin (e.g. North Devon, Scilly Islands, Southern Ireland). The age of these distal sediments, previously mapped as pre-Devensian tills, is constrained by amino acid ratios.Basin rebound following deglaciation was rapid, with over 100 m recovery in 3 ka, and was followed by a low marine still stand. Peat, accumulating in offshore areas now as much as 55 m below sea level has been drowned by the postglacial eustatic rise in sea level.The glacio-sedimentary model identified in this paper, involving rapid ice retreat and related sedimentation triggered by rising relative sea level, suggests that isotatic downwarping is an important mechanism for deglaciating continental shelves.  相似文献   

4.
In support of their ‘glaciomarine’ model for the deglaciation of the Irish Sea basin, Eyles and McCabe cited the occurrence of distal glaciomarine mud drapes onshore in the Isles of Scilly and North Devon, and of arctic beach‐face gravels and sands around the shores of the Celtic Sea. Glacial and sea‐level data from the southern part of the Irish Sea in the terminal zone of the ice stream and the adjacent continental slope are reviewed here to test this aspect of the model. The suggestion that the glacial sequences of both the Isles of Scilly and Fremington in North Devon are glaciomarine mud drapes is rejected. An actively calving tidewater margin only occurred early in the deglacial sequence close to the terminal zone in the south‐central Celtic Sea. Relative sea‐levels were lower, and therefore glacio‐isostatic depression less, than envisaged in the glaciomarine model. Geochronological, sedimentological and biostratigraphical data indicate that the raised beach sequences around the shores of the Celtic Sea and English Channel were deposited at, or during regression soon after, interglacial eustatic highstands. Evidence for ice‐rafting at a time of high relative sea‐levels is restricted to a phase(s) earlier than the Late Devensian. These data indicate that the raised beach sequences have no bearing on the style of Irish Sea deglaciation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
《Quaternary Science Reviews》2005,24(14-15):1673-1690
Sedimentary sequences deposited by the decaying marine margin of the British–Irish Ice Sheet (BIIS) record isostatic depression and successive ice sheet retreat towards centres of ice dispersion. Radiocarbon dating by accelerator mass spectrometry (AMS) of in situ marine microfaunas that are commonly associated with these sequences constrain the timing of glacial and sea level fluctuations during the last deglaciation, enabling us to evaluate the dynamics of the BIIS and its response to North Atlantic climate change. Here we use our radiocarbon-dated stratigraphy to define six major glacial and sea level events since the Last Glacial Maximum. (1) Initial deglaciation may have occurred ⩾18.3 kyr 14C BP along the northwestern Irish coast, in agreement with a deglacial age of ∼22 36Cl kyr BP for southwestern Ireland. Ice retreated to inland centres and areas of transverse moraine began to form across the north Irish lowlands. (2) Channels cut into glaciomarine deglacial sediments along the western Irish Sea coast are graded to below present sea level, identifying a fall of relative sea level (RSL) in response to isostatic emergence of the coast. (3) Marine mud that rapidly infilled these channels records an abrupt rise in global sea level of 10–15 m ∼16.7 14C kyr BP that flooded the Irish Sea coast and may have triggered deglaciation of a marine-based margin in Donegal Bay. (4) Intertidal boulder pavements in Dundalk Bay indicate that RSL ∼15.0 14C kyr BP was similar to present. (5) A major readvance of all sectors of the BIIS occurred between 14 and 15 kyr 14C BP which overprinted subglacial transverse moraines and delivered a substantial sediment flux to tidewater ice sheet margins. This event, the Killard Point Stadial, indicates that the BIIS participated in Heinrich event 1. (6) Subsequent deposition of marine muds on drumlins 12.7 14C kyr BP indicates isostatic depression and attendant high RSL resulting from the Killard Point readvance. These events identify a dynamic BIIS during the last deglaciation, as well as significant changes in RSL that reflect a combination of isostatic loading and eustatic changes in global sea level.  相似文献   

6.
Late-Pleistocene deposits in north County Mayo were deposited in three main glacigenic environments. 1. Drumlins and basal tills were formed when ice moved from the Irish lowlands and local mountain catchments into Donegal Bay. 2. Gilbert-type deltas accumulated up to 80m I.O.D. on the lowlands and subaqueous moraines formed across minor valleys when marine-based ice grounded inland. 3. A thick drape of fossiliferous glaciomarine mud along the coastal fringe was deposited from meltwater plumes and by ice-rafting immediately outside of these ice limits. The muds contain an Elphidium clavatum-dominated, low-diversity microfauna which is characteristic of cold-water conditions adjacent to glacier termini. Valves of Macoma calcarea from the mud have been 14C dated at 16940 ± 120 and 17300 ± 100 BP. The high-level delta complex was deposited from tidewater glaciers in a peripheral depression adjacent to the drumlin ice limits of north County Mayo. Although the field evidence cannot be used to determine former sea level history with any accuracy, it poses general problems for sea level history and isostatic effects of the last major ice sheet in the west of Ireland. Raised glaciomarine sequences commonly occur in close association with drumlin ice limits elsewhere in Ireland and represent marine transgressions prior to glacial unloading. It is suggested that the magnitudes and patterns of crustal depression are greater and geometrically more complex at the margins of ice sheets in Ireland than hitherto realised.  相似文献   

7.
Quaternary sedimentary successions are described from the Linda Valley, a small valley in western Tasmania that was dammed by ice during Early and Middle Pleistocene glaciations. Mapping and logging of exposures suggest that an orderly sequence of deposits formed during ice incursion, occupation and withdrawal from tributary valleys. Four principal sediment assemblages record different stages of ice occupation in the valley. As the glacier advanced, a proglacial, lacustrine sediment assemblage dominated by laminated silts and muds deposited from suspension accumulated in front of the glacier. A subglacial sediment assemblage consisting of deformed lacustrine deposits and lodgement till records the overriding of lake-bottom sediments as the glacier advanced up the valley into the proglacial lake. As the glacier withdrew from the valley, a supraglacial sediment assemblage of diamict, gravel, sand and silt facies formed on melting ice in the upper part of the valley. A lacustrine regression in the supraglacial assemblage is inferred on the basis of a change from deposits mainly resulting from suspension in a subaqueous setting to relatively thin and laterally discontinuous laminated sediments, occurrence of clastic dykes, and increasing complexity of the geometry of deposits that indicate deposition in a subaerial setting. A deltaic sediment assemblage deposited during the final stage of ice withdrawal from the valley consists of steeply dipping diamict and normally graded gravel facies formed on delta foresets by subaqueous sediment gravity flows. The sediment source for the delta, which prograded toward the retreating ice margin, was the supraglacial sediment assemblage previously deposited in the upper part of the valley. A depositional model developed from the study of the Linda Valley may be applicable to other alpine glaciated areas where glaciers flowed through or terminated in medium- to high-relief topography.  相似文献   

8.
The coastline of County Down includes sites that are pivotal to understanding the history of the last glaciation of the northern Irish Sea Basin in relation to relative sea level and regional glacial readvances. The cliff sections display evidence that has been used to underpin controversial models of glaciomarine sedimentation in isostatically-depressed basins followed by emergent marine and littoral environments. They also provide crucial evidence claimed to constrain millennial-scale ice sheet oscillations associated with uniquely large and rapid sea-level fluctuations. This paper reviews previous work and reports new findings that generally supports the ‘terrestrial’ model of glaciation, involving subglacial accretion and deformation of sediment beneath grounded ice. Deep troughs were incised into the till sheet during a post Late Glacial Maximum draw-down of ice into the Irish Sea Basin. Ice retreat was accompanied by glaciomarine accretion of mud in the troughs during a period of high relative sea level. The trough-fills were over-ridden, compacted, deformed and truncated during a glacial re-advance that is correlated with the Clogher Head Readvance. Grounding-line retreat accompanied by rapid subaqueous ice-proximal sedimentation preserved a widespread subglacial stone pavement. Raised beach gravels cap the sequence. The evidence supports an uninterrupted fall in relative sea level from c. 30?m that is consistent with sea level curves predicted by current glacio-isostatic adjustment modelling. Critical evidence previously cited in support of subaerial dissection of the troughs, and hence rapid fall and rise in relative sea level prior to the deposition of the glaciomarine muds, is not justified.  相似文献   

9.
This paper describes a complex sequence of glacigenic sediments occupying a faultbounded depression at Aberdaron Bay, western Lleyn. The sequence offers an insight into sedimentary environments during deglaciation of the Irish Sea Basin. A lower stratified diamict association (LDA) containing contorted units of fine sand/silt and displaying strong, consistent clast fabrics, is overlain by an upper diamict association (UDA) with weaker fabrics and extensive sand and gravel layers and channel fills. Certain characteristics of the sequence can be explained by a glacimarine depositional model, but there are several problems. In particular, the geometry of the sediments is difficult to explain without recourse to the melting of buried ice. An alternative model that overcomes these problems involves the decay of a terrestrial glacier containing reworked marine sediments. Supraglacial sediment flows released during decay of thinner ice covering the surrounding hills (UDA) would have rapidly buried a thick stagnant ice mass in the Aberdaron depression, facilitating slow melting and release of basal meltout till (LDA). A model is presented that accounts for the stagnation and in situ decay of a debris-rich Irish Sea glacier, and which could explain many of the deposits and landforms surrounding the Irish Sea Basin without recourse to high relative sea-levels.  相似文献   

10.
11.
New outcrops of Middle Carboniferous glacigenic deposits found in the Guandacol Formation (western Paganzo Basin) are described in this paper. The study locality of Los Pozuelos Creek (northwestern Argentina) includes coarse-grained diamictites, rhythmites, laminated pebbly mudstones and shales that represent an expanded column of the Gondwanic glaciation in this region. Thirteen lithofacies recorded at the measured section have been grouped into three facies associations. Facies Association I is composed of coarse-grained massive and stratified diamictites (lithofacies Dmm, Dms, Dmg, Dcs), laminated siltstones with dropstones (Fld) and interstratified sandstones and mudstones (Fl, Sr). These rocks represent both tillites and resedimented diamictites closely associated to small water bodies where laminated siltstones with dropstones and stratified sandstones and mudstones were deposited. Facies Association II comprises couplets of matrix-supported thinly bedded diamictites (Dmld) and laminated mudstones with dropstones (Fld). This facies association results from the combination of three different processes, subaqueous cohesionless debris flows, coeval rainout of ice-rafted debris and settling of fine-grained particles from supension. Finally, Facies Association III is made up of laminated mudstones without dropstones, thin marl levels and scarce fine- to very fine-grained sandstones. This assemblage clearly suggests sedimentation in a deep marine environment below the wave base.The architecture of the glacigenic deposits has been investigated using photomosaic panels. The geometry of the depositional bodies and facies suggest that Los Pozuelos Creek outcrops exhibit a well preserved three-dimensional example of a grounding-line system. In particular, three different subenvironments of a morainal bank were interpreted: a bank-front, a bank-core and a bank-back. The bank-front assemblage is characterized by coarse-grained, mainly resedimented, diamictites grading laterally to prograding clinoforms composed of interbedded matrix-supported thinly bedded diamictite and mudstones. The bank-core assemblage is formed by a stacking of coarse-grained diamictites where at least five major erosional surfaces, bounding four multistory diamictite bodies, can be recognized. Finally, the bank-back assemblage corresponds to discontinuous intervals of striated lodgement till, and coarse-grained resedimented diamictites showing important post-depositional deformation. The retrogradational stacking of the morainal banks indicate an overall glacial retreat and a glacioeustatic sea-level rise. Erosional surfaces at the base of each morainal bank suggest intervening short term episodes of ice advance.The new data presented here confirm the existence of "true" tillites in western Paganzo Basin and suggest several (at least four) pulses of glacial advance and retreat during the Namurian glaciation in the region and permit a more refined interpretation of the glacial deposits in the Huaco area.  相似文献   

12.
Mineral magnetic analyses are applied to a series of diamict samples taken from the Quaternary sequence in the Isle of Man in order to assess the relative magnitude of the intra-and inter-unit variation of the magnetic properties. The results are analysed both qualitatively and quantitatively and show that the level of intra-unit variation is significantly less than the level of inter-unit variation. The intra-unit variation detected appears to show some relationship to the basic stratigraphy. Previous correlations based upon field evidence of diamict units exposed upon the east and west coasts of the Isle of Man are supported by their mineral magnetic properties. The statistically significant differences in the magnetic mineralogy of the stratigraphically lower Wyllin and Shellag Tills and the upper Orrisdale, Ballavarkish and Ballaquark Tills suggests distinct provenances for these two suites of sediments, allowing potential source areas to be suggested. These source areas are consistent with published data on ice flow directions in the Irish Sea Basin during the Devensian.  相似文献   

13.
This paper documents the glaciovolcanic landsystem of the Brekknafjöll–Jarlhettur ridge in Central Iceland. Glaciolacustrine diamict is found beneath, and in association with, a complex assemblage of pillow lava, lava breccias and hyaloclastites. Three depositional environments are identified: glaciolacustrine fan, pillow lava dome, and hyaloclastite fan. These subaqueous environments occurred both simultaneously and at different times along the volcanic fissures which underlie the ridge and have given rise to a complex facies architecture. This facies architecture provides evidence that the ridge evolved in a time transgressive fashion during several episodes of volcanism, some of which may have been punctuated by periods of ice erosion. Associated with the ridge are large-diapiric folds in diamict and gravel which form by the loading and lateral displacement of saturated diamict beneath the developing volcanic pile. A depositional model is presented which emphasises the glaciolacustrine component and the time transgressive nature of the glaciovolcanic landsystem. Much of the eruption occurred in subglacial to englacial lakes or vaults, which were probably linked by water and sediment exchange. The initial subglacial vaults appear to have extended beyond the fissure limits and were infilled by glaciolacustrine diamicts, subaqueous outwash and the eruption of pillow lava. This was followed by the eruption of hyaloclastite sand and breccia forming an elongated fan.  相似文献   

14.
The Bolla Bollana Formation is an exceptionally thick (ca 1500 m), rift‐related sedimentary succession cropping out in the northern Flinders Ranges, South Australia, which was deposited during the Sturtian (mid Cryogenian) glaciation. Lithofacies analysis reveals three distinct facies associations which chart changing depositional styles on an ice‐sourced subaqueous fan system. The diamictite facies association is dominant, and comprises both massive and stratified varieties with a range of clast compositions and textures, arranged into thick beds (1 to 20 m), representing stacked, ice‐proximal glaciogenic debris‐flow deposits. A channel belt facies association, most commonly consisting of normally graded conglomerates and sandstones, displays scour and fill structure of ca 10 m width and 1 to 3 m depth: these strata are interpreted as channelized turbidites. Rare mud‐filled channels in this facies association bear glacially striated lonestones. Finally, a sheet heterolithics facies association contains a range of conglomerates through sandstones to silty shales arranged into clear, normally graded cycles from the lamina to bed scale. These record a variety of non‐channelized turbidites, probably occupying distal and/or inter‐channel locations on the subaqueous fan. Coarsening and thickening‐up cycles, capped by dolomicrites or mudstones, are indicative of lobe build out and abandonment, potentially as a result of ice lobe advance and stagnation. Dropstones, recognized by downwarped and punctured laminae beneath pebbles to boulders in shale, or in delicate climbing ripple cross‐laminated siltstones, are clearly indicative of ice rafting. The co‐occurrence of ice‐rafted debris and striated lonestones strongly supports a glaciogenic sediment source for the diamictites. Comparison to Pleistocene analogues enables an interpretation as a trough mouth fan, most probably deposited leeward of a palaeo‐ice stream. Beyond emphasizing the highly dynamic nature of Sturtian ice sheets, these interpretations testify to the oldest trough mouth fan recorded to date.  相似文献   

15.
The Brownstones form the highest Lower Old Red Sandstone in South Wales and the Welsh Borderlands. Sections from the Brecon Beacons of Central South Wales consist of laterally extensive sheets of interbedded sandstone and siltstone. Facies sequence A consists of parallel laminated sheet sandstones and siltstones and is interpreted as a sandy sheetflood and distal muddy floodflat association. Facies sequence B comprises sheet sandstones composed of multistorey channel fills, small calcrete-clast filled channels and massive siltstones with thin interbedded sandstones. This sequence is interpreted as low sinuosity channel deposits merging laterally and downslope into a muddy flood-basin, with calcrete clasts infilling intrabasinal channel systems. Facies sequence C consists of multistorey sandstones and is interpreted as a proximal low sinuosity channel system. The Brownstones of the Brecon Beacons formed on an extensive alluvial plain with low sinuosity sand-bed channels merging downslope into sheetfloods and muddy floodflats, in a system broadly analogous to that of the Eyre Basin of South Australia.  相似文献   

16.
《Sedimentary Geology》2007,193(1-4):167-192
The coarse-grained, ice-contact, Porta Subaqueous Fan/Delta Complex was deposited in glacial Lake Rinteln at the margin of the Saalian ice sheet that advanced south of the Weser Chains, NW Germany. The ice-proximal depositional system was up to 15 km long and 10 km wide. The present study deals with ice-proximal subaqueous fan deposits, which are interpreted as products of a subcritical plane-wall outflow jet that periodically passed into a supercritical jet with hydraulic jump. The proximal facies assemblage consists of the coarse, clast-supported gravelly deposits of a hyperconcentrated (high-density) effluent and of related cohesionless debris flows attributed to the conduit or immediate proximal jet outflow zone of flow establishment. The intermediate facies assemblage, attributed to the outflow jet proximal zone of flow transition, is dominated by normally graded and cross-stratified gravels with scour structures at their bases; these gravels were deposited by a high-density effluent capable of forming mouthbar-like features. These deposits pass downcurrent into an assemblage of planar parallel-stratified and planar and trough cross-stratified sands and pebbly sands (partially interpreted as antidunes), with abundant scour structures and intercalated layers of fine sand/silt and silty mud, attributed to the jet distal zone of flow transition. The distal facies assemblage consists of trough cross-stratified sands and pebbly sands, and is attributed to the outflow jet proximal zone of established flow. The sedimentary succession as a whole has wedge-shape geometry, with a gentle fan-shaped inclination of the bedding from the southeast to the southwest. Repeated vertical alternations of supercritical and subcritical deposits and muddy interlayers can be attributed to temporary fluctuations in the meltwater outflow, whereas the overall upward fining of the succession indicates a net decline of meltwater discharges.  相似文献   

17.
This paper defines the principal architectural elements present within the Pleistocene, glaciolacustrine basin-fill of the Copper River Basin in Alaska. The Copper River drains an intermontane basin via a single deeply incised trench through the Chugach Mountains to the Gulf of Alaska. This trench was blocked by ice during the last glacial cycle and a large ice-dammed lake, referred to as Lake Atna, filled much of the Copper Basin. Facies analysis within the basin floor allows a series of associations to be defined consistent with the basinward transport of sediment deposited along calving ice margins and at the basin edge. Basinward transport involves a continuum of gravity driven processes, including slumping, cohesive debris flow, hyperconcentrated/concentrated density flows, and turbidity currents. This basinward transport results in the deposition of a series of subaqueous fans, of which two main types are recognised. (1) Large, stratified, basin floor fans, which extend over at least 5 km and are exposed in the basin centre. These fans are composed of multiple lobes, incised by large mega-channels, giving fan architectures that are dominated by horizontal strata and large, cross-cutting channel-fills. Individual lobes and channel-fills consist of combinations of: diamict derived from iceberg rainout and the ice-marginal release of subglacial sediment; multiple units of fining upward gravels which grade vertically into parallel laminated and rippled fine sands and silts, deposited by a range of density flows and currents derived from the subaqueous discharge of meltwater; and rhythmites grading vertically into diamicts deposited from a range of sediment-density flows re-mobilising sediment deposited by either iceberg rainout or the ice-marginal release of sediment. (2) Small, complex, proximal fans, which extend over less than 2 km, and are exposed in the southern part of the basin. These fans are composed of coalescing and prograding lobes of diamict and gravel deposited both directly by subaqueous meltwater and from sediment-density flows. These lobes are cross-cut by a range of sand and gravel-filled troughs and channels cut by subaqueous outwash, and either overlie or are overlain by horizontal sheets of gravel and diamict deposited from a range of sediment-density flows. The fans are, therefore, characterised by a complex, and laterally variable facies, architecture. Water depth, proglacial topography, stability of meltwater portals and sediment supply may all be important in determining the type of subaqueous fan present at any one location. We suggest that the Copper River basin-fill is dominated by packages of sediment containing multiple subaqueous fans with individual fans separated by units of diamict. Each sediment package is in turn separated from the next by a palaeo-landsurface shaped by interstadial/interglacial fluvial processes and by volcanic debris flows.  相似文献   

18.
The Palaeoproterozoic Frere Formation (ca 1.89 Gyr old) of the Earaheedy Basin, Western Australia, is a ca 600 m thick succession of iron formation and fine‐grained, clastic sedimentary rocks that accumulated on an unrimmed continental margin with oceanic upwelling. Lithofacies stacking patterns suggest that deposition occurred during a marine transgression punctuated by higher frequency relative sea‐level fluctuations that produced five parasequences. Decametre‐scale parasequences are defined by flooding surfaces overlain by either laminated magnetite or magnetite‐bearing, hummocky cross‐stratified sandstone that grades upward into interbedded hematite‐rich mudstone and trough cross‐stratified granular iron formation. Each aggradational cycle is interpreted to record progradation of intertidal and tidal channel sediments over shallow subtidal and storm‐generated deposits of the middle shelf. The presence of aeolian deposits, mud cracks and absence of coarse clastics indicate deposition along an arid coastline with significant wind‐blown sediment input. Iron formation in the Frere Formation, in contrast to most other Palaeoproterozoic examples, was deposited almost exclusively in peritidal environments. These other continental margin iron formations also reflect upwelling of anoxic, Fe‐rich sea water, but accumulated in the full spectrum of shelf environments. Dilution by fine‐grained, windblown terrigenous clastic sediment probably prevented the Frere iron formation from forming in deeper settings. Lithofacies associations and interpreted paragenetic pathways of Fe‐rich lithofacies further suggest precipitation in sea water with a prominent oxygen chemocline. Although essentially unmetamorphosed, the complex diagenetic history of the Frere Formation demonstrates that understanding the alteration of iron formation is a prerequisite for any investigation seeking to interpret ocean‐atmosphere evolution. Unlike studies that focus exclusively on their chemistry, an approach that also considers palaeoenvironment and oceanography, as well the effects of post‐depositional fluid flow and alteration, mitigates the potential for incorrectly interpreting geochemical data.  相似文献   

19.
Mapping, analysis and interpretation of glacigenic sediments in the King Valley, Tasmania has led to a revision of the Pleistocene stratigraphy of Tasmania. The sediments provide evidence of a glaciation that occurred between the Middle Pleistocene Henty Glaciation and the Early Pleistocene Linda Glaciation. The Moore Glaciation is estimated, on the basis of weathering rinds, amino-acid dating and palaeomagnetism to have occurred between 400000 and 550000 yrs BP. At Baxter Rivulet, sediments of the Moore Glaciation rest unconformably on highly weathered till and weathered Ordovician limestone and are overlain by outwash gravel of the Henty Glaciation. The Moore Glaciation sediments can be divided into four formations on the basis of lithology, organic content and degree of chemical weathering. The Huxley Formation (oldest) was deposited by an ice advance of the Mt. Jukes Glacier and is overlain by the Baxter Formation. The Baxter Formation consists of a bed of organic silty sand which records a cool non-forested flora of an interstadial period. The overlying Pyramid and Moore formations are outwash gravels from the Mt. Jukes and King Valley glaciers respectively. Though deposited during the same general ice advance, these two gravels were deposited at different times and show that the glaciers of the West Coast Range had spatially differentiated responses to climatic change.  相似文献   

20.
The stratigraphy and sedimentology of the glacial deposits exposed along the coast of east Yorkshire are reviewed. Critical sections at Filey Brigg, Barmston and Skipsea are examined to reassess the stratigraphy of Devensian Dimlington Stadial glacial deposits in the light of recent developments in glacial sedimentology. Sedimentary and glaciotectonic structures studied in the field and by using scanning electron microscopy are emphasised. Two hypotheses are considered for the genesis of the interbedded diamictons and stratified sediments. The first involves the deposition of lodgement till and/or deformation till followed by meltout till, which was overridden to produce more deformation till, reflecting periods of ice stagnation punctuated by glacier thickening. The second hypothesis, which is favoured on the basis of field evidence and micromorphology, involves the vertical accretion of a deforming till layer associated with cavity/channel or tunnel valley fills, beneath active ice. At Barmston the upper part of the diamicton contains elongate pendant structures containing gravels, indicating that the diamicton was saturated and able to flow. The diamictons, therefore, represent a complex sequence of tills deposited and deformed by active ice during the Dimlington Stadial. Previously published stratigraphical schemes involving classifications of multiple tills in east Yorkshire should be simplified and it is more appropriate to assign these to a single formation, the Skipsea Till Formation. Rhythmic glaciolacustrine and proglacial glaciofluvial sediments overlie the tills at Barmston and Skipsea. These were deposited in sag basins during deglaciation as the tills settled and deformed under thickening sediment and as buried ice melted out. Extensive sands and gravels cap the succession and were deposited on a sandur during the later stages of deglaciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号