共查询到20条相似文献,搜索用时 74 毫秒
1.
D. CRAW 《Journal of Metamorphic Geology》1998,16(3):395-402
The Otago and Alpine Schist belts of southern New Zealand have traditionally been treated as structurally continuous metamorphic belts with minor modification by brittle faulting. Mapping of biotite and garnet isograds has been hindered by rock types unfavourable for index mineral growth. Closer examination of well-exposed boundaries between metamorphic zones shows that they juxtapose rocks of different type and structural history. Apparent structural continuity across these zones is due to development of a locally pervasive boundary-parallel foliation on both sides of the boundary, in a broad boundary zone (up to 2 km wide). This feature has implications for mapping and metamorphic petrology in other metamorphic belts, where structural continuity has traditionally been assumed. True metamorphic isograds may be rare, and metamorphic zones may more commonly represent structural slices of complex, tectonically disrupted metamorphic piles. 相似文献
2.
The Zealandia portion of the Pacific–Gondwana margin underwent widespread extension, fragmentation, separation and subsidence during the final stages in the breakup of Gondwana. Although these processes shaped the geology of New Zealand, their timing and the timing of subduction cessation in the region remain unclear. To investigate the timing of these processes, we used Lu–Hf garnet geochronology to date six samples of the Alpine Schist, which represents the metamorphic section of the former Zealandia margin. The garnet dates range from 97.3 ± 0.3 to 75.4 ± 1.3 Ma. Compositional zoning in garnet indicates that the spread in ages results from diachronous metamorphism in the upper plate at the Pacific–Gondwana margin, occurring concurrently with rifting of Zealandia from East Gondwana via opening of the Tasman Sea. Clear spatial trends in the timing of garnet growth throughout the Alpine Schist are absent, indicating that either regional age trends were offset by post‐metamorphic deformation, or that metamorphism did not result from a single regional heat source, and was instead driven by short‐duration, spatially dispersed processes such as episodic fluid‐fluxing or mechanical heating. Diachronous metamorphism of the Alpine Schist can be attributed to heat conduction from the rising upper mantle during widespread extension, progressive burial and heating of accretionary wedge sediments during ongoing horizontal shortening, or fluid‐fluxing sourced from a subducting and dehydrating Hikurangi Plateau. These results indicate that during separation of Zealandia from East Gondwana in the late Cretaceous, the crust at the Pacific–Gondwana margin remained hot, potentially facilitating the extensive thinning of the Zealandia lithosphere during this time. 相似文献
3.
Pressure–temperature pseudosections for ‘greyschist’ (metamorphosed greywacke and argillite) from the Alpine Schist (Haast Schist group) near Hokitika (Southern Alps, New Zealand) are used to gain new insights into its metamorphic history. The rocks were metamorphosed at relatively low‐grade conditions associated with the first appearance and initial growth of garnet in the stability field of albite. The measured and predicted garnet compositional zoning data are used to construct an overall P–T path by combining P–T path results from nearby rocks that have a range of MnO contents. The P–T path obtained is steep from ~380 °C/2.5 kbar up to ~490 °C/8.5 kbar, then recurves sharply with garnet growth continuing during early decompression to ~500 °C/6.5 kbar. Most garnet growth in the study area took place in the stability field of albite, with oligoclase appearing only during decompression, when the peristerite gap was entered. On appearance of oligoclase, there is a marked decrease in the CaO content of garnet. The preservation of mineral assemblages from near‐peak temperature conditions can be understood in terms of the P–T path subsequently becoming tangential to water content contours, during cooling with further decompression. 相似文献
4.
H. Stowell K. Odom Parker M. Gatewood A. Tulloch A. Koenig 《Journal of Metamorphic Geology》2014,32(2):151-175
Garnet granulite facies mid‐to lower crust in Fiordland, New Zealand, provides evidence for pulsed intrusion and deformation occurring in the mid‐to lower crust of magmatic arcs. 238U‐206Pb zircon ages constrain emplacement of the ~595 km2 Malaspina Pluton to 116–114 Ma. Nine Sm‐Nd garnet ages (multi‐point garnet‐rock isochrons) ranging from 115.6 ± 2.6 to 110.6 ± 2.0 Ma indicate that garnet granulite facies metamorphism was synchronous or near synchronous throughout the pluton. Hence, partial melting and garnet granulite facies metamorphism lasted <5 Ma and began within 5 Ma of pluton emplacement. Garnet granulite facies L‐S tectonites in the eastern part of the Malaspina Pluton record the onset of extensional strain and arc collapse. An Sm‐Nd garnet age and thermobarometric results for these rocks directly below the amphibolite facies Doubtful Sound shear zone provide the oldest known age for extension in Fiordland at ≥112.8 ± 2.2 Ma at ~920 °C and 14–15 kbar. Narrow high Ca rims in garnet from some of these suprasolidus rocks could reflect a ≤ 1.5 kbar pressure increase, but may be largely a result of temperature decrease based on the Ca content of garnet predicted from pseudosections. At peak metamorphic conditions >900 °C, garnet contained ~4000 ppm Ti; subsequently, rutile inclusions grew during declining temperature with limited pressure change. Garnet granulite metamorphism of the Malaspina Pluton is c. 10 Ma younger than similar metamorphism of the Pembroke Granulite in northern Fiordland; therefore, high‐P metamorphism and partial melting must have been diachronous for this >3000 km² area of mid‐to‐lower crust. Thus, two or more pulses of intrusion shortly followed by garnet granulite metamorphism and extensional strain occurred from north to south along the axis of the lower crustal root of the Cretaceous Gondwana arc. 相似文献
5.
AbstractThe transition from the Alpine tectonic assembly to the exhumation of the units in the Rhodope metamorphic province in northernmost Greece has been refined by 40Ar/39Ar laserprobe mica analyses. Preservation of pre-Alpine (~ 280 Ma and 145 Ma) muscovite cooling ages at the western margin of the Rhodope indicate that subsequent events failed to reset the argon system thermally in white mica in the outcropping basement of this region. The central and eastern Rhodope are characterized by white mica cooling ages of 40–35 Ma with ages gradually decreasing to ca. 15 Ma near the eastern margin of the Strymon Valley. The Eo-Oligocene ages reflect the regional exhumation of the metamorphosed units to shallow crustal levels, with corresponding temperatures below ca. 350 °C, by 40–35 Ma. The younger cooling ages are attributed to the initiation and subsequent operation of the Strymon-Thasos detachment system since ca. 30 Ma. This study provides a crucial contribution to future regional tectonic models for the Rhodope region as it recognizes an early stage of development of the Strymon-Thasos detachment system, and has constrained the regional exhumation of the Rhodope metamorphic province since 40 Ma indicating that the regionally observed amphibolite facies metamorphism had terminated by this time. © 2000 Editions scientifiques et médicales Elsevier SAS 相似文献
6.
Sonia Alejandra Torres Sánchez Carita Augustsson Uwe Jenchen José Rafael Barboza Gudiño Andreas Gärtner Mandy Hofmann Ulf Linnemann 《Geological Journal》2021,56(6):3342-3377
The basement complex of the Sierra Madre region in north-eastern Mexico is classified into four domains: (a) granulite facies rocks of Grenville age (ca. 1 Ga) known as the Novillo Gneiss, (b) the Palaeozoic Granjeno Schist, (c) an unmetamorphosed succession of Palaeozoic marine siliciclastic and volcanic rocks, and (d) an Ordovician plagiogranite body. We present a geochemical and provenance study of the metasedimentary rocks of the Granjeno Schist, which are associated with metavolcanic and meta-ultramafic rocks. In the Granjeno Schist, trace element ratios (Th/Sc, La/Sch, La/Sc, and Zr/Sc) and REE compositions of the metasedimentary rocks are similar to values for the mean continental crust values and are consistent with derivation of detritus from felsic rocks. Chemical index of alteration values of 30–80 indicates low to moderate weathering of the source. The clastic metasedimentary rocks have moderately radiogenic Nd-isotopic compositions with initial εNd(t) values of −9 to −6, and model ages between 1.5 and 1.7 Ga. Ages of detrital zircon grains from the metasedimentary rocks are mostly 1.6–1.1 Ga, but some ages are 530–410 Ma. Such a Novillo Gneiss-like age spectrum argues for short transport for the majority of zircon grains, with potential additional transport from the Maya Block. Na-amphibole and mica geobarometer results of up to 6 kbar indicate high-pressure subduction-related metamorphism of the Granjeno Schist that was followed by a Pennsylvanian–Permian sub-greenschist to greenschist metamorphic overprint in an accretionary prism. Thus, the Granjeno Schist is a representative of ocean-plate stratigraphy that originated proximally close to a continent. 相似文献
7.
F. S. SPEAR J. T. CHENEY J. M. PYLE T. M. HARRISON G. LAYNE 《Journal of Metamorphic Geology》2008,26(3):317-329
Monazite crystallization ages have been measured in situ using SIMS and EMP analysis of samples from the Bronson Hill anticlinorium in central New England. In west‐central New Hampshire, each major tectonic unit (nappe) displays a distinctive P–T path and metamorphic history that requires significant post‐metamorphic faulting to place them in their current juxtaposition, and monazite ages were determined to constrain the timing of metamorphism and nappe assembly. Monazite ages from the low‐pressure, high‐temperature Fall Mountain nappe range from c. 455 to 355 Ma, and Y zoning indicates that these ages comprise three to four distinct age domains, similar to that found in the overlying Chesham Pond nappe. The underlying Skitchewaug nappe contains monazite ages that range from c. 417 to 307 Ma. 40Ar/39Ar ages indicate rapid cooling of the Chesham Pond and Fall Mountain nappes after 350 Ma, which is believed to represent the time of emplacement of the high‐level Chesham Pond and Fall Mountain nappes onto rocks of the underlying Skitchewaug nappe. Garnet zone rocks from western New Hampshire contain monazite that display a range of ages (c. 430–340 Ma). Both the metamorphic style and monazite ages suggest that the low‐grade belt in western New Hampshire is continuous with the Vermont sequence to the west. Rocks of the Big Staurolite nappe in western New Hampshire contain monazite that crystallized between c. 370 and 290 Ma and the same unit along strike in northern New Hampshire and central Connecticut records ages of c. 257–300 Ma. Conspicuously absent from this nappe are the older age populations that are found in both the overlying nappes and underlying garnet zone rocks. These monazite ages confirm that the metamorphism observed in the Big Staurolite nappe occurred significantly later than that in the units structurally above and below. These data support the hypothesis that the Big Staurolite nappe represents a major tectonic boundary, along which rocks of the New Hampshire metamorphic series were juxtaposed against rocks of the Vermont series during the Alleghanian. 相似文献
8.
Structural thickening of the Torlesse accretionary wedge via juxtaposition of arc-derived greywackes (Caples Terrane) and quartzo-feldspathic greywackes (Torlesse Terrane) at 120 Ma formed a belt of schist (Otago Schist) with distinct mica fabrics defining (i) schistosity, (ii) transposition layering and (iii) crenulation cleavage. Thirty-five 40Ar/39Ar step-heating experiments on these micas and whole rock micaceous fabrics from the Otago Schist have shown that the main metamorphism and deformation occurred between 160 and 140 Ma (recorded in the low grade flanks) through 120 Ma (shear zone deformation). This was followed either by very gradual cooling or no cooling until about 110 Ma, with some form of extensional (tectonic) exhumation and cooling of the high-grade metamorphic core between 109 and 100 Ma. Major shear zones separating the low-grade and high-grade parts of the schist define regions of separate and distinct apparent age groupings that underwent different thermo-tectonic histories. Apparent ages on the low-grade north flank (hanging wall to the Hyde-Macraes and Rise and Shine Shear Zones) range from 145 to 159 Ma (n=8), whereas on the low-grade south flank (hanging wall to the Remarkables Shear Zone or Caples Terrane) range from 144 to 156 Ma (n=5). Most of these samples show complex age spectra caused by mixing between radiogenic argon released from neocrystalline metamorphic mica and lesser detrital mica. Several of the hanging wall samples with ages of 144–147 Ma show no evidence for detrital contamination in thin section or in the form of the age spectra. Apparent ages from the high-grade metamorphic core (garnet–biotite–albite zone) range from 131 to 106 Ma (n=13) with a strong grouping 113–109 Ma (n=7) in the immediate footwall to the major Remarkables Shear Zone. Most of the age spectra from within the core of the schist belt yield complex age spectra that we interpret to be the result of prolonged residence within the argon partial retention interval for white mica (430–330 °C). Samples with apparent ages of about 110–109 Ma tend to give concordant plateaux suggesting more rapid cooling. The youngest and most disturbed age spectra come from within the ‘Alpine chlorite overprint’ zone where samples with strong development of crenulation cleavage gave ages 85–107 and 101 Ma, due to partial resetting during retrogression. The bounding Remarkables Shear zone shows resetting effects due to dynamic recrystallization with apparent ages of 127–122 Ma, whereas overprinting shear zones within the core of the schist show apparent ages of 112–109 and 106 Ma. These data when linked with extensional exhumation of high-grade rocks in other parts of New Zealand indicate that the East Gondwana margin underwent significant extension in the 110–90 Ma period. 相似文献
9.
N. Mortimer 《International Journal of Earth Sciences》2000,89(2):295-306
A regional petrographic reconnaissance of psammitic and pelitic rocks in the Otago Schist, New Zealand, has revealed the presence of garnet (“grossalspite” with typical rim composition almandine41, spessartine25, grossular33, pyrope1) and biotite in 37 new samples, more than doubling the previously known number. A new garnet–biotite–albite zone can now be defined in the greenschist facies Otago Schist that is distinct from the better-known biotite, garnet and oligoclase zones in the along-strike Alpine Schist. The garnet–biotite–albite zone is in part metamorphically discontinuous with adjacent schists and does not support models of simple, continuous, progressive Jurassic regional metamorphism in Otago. The structurally higher (lower grade) boundary of the zone coincides in at least three places with previously mapped regional shear zones. The structurally lower (expected higher grade) boundary of the zone appears to be obliterated by a chlorite zone overprint which can be spatially related to Alpine Schist recrystallisation of ?Cretaceous age. The Otago situation serves as an example of the subtle metamorphic discontinuities that probably pervade many orogenic belts. 相似文献
10.
New Zealand's Geological Foundations 总被引:2,自引:0,他引:2
New Zealand is a fragment of Gondwana that, before Late Cretaceous sea floor spreading, was contiguous with Australia and Antarctica. Only about 10% of the area of continental crust in the wider New Zealand region (Zealandia) is emergent above sea level as the North and South Islands. No Precambrian cratonic core is exposed in onland New Zealand. The Cambrian to Early Cretaceous basement can be described in terms of nine major volcano-sedimentary terranes, three composite regional batholiths, and three regional metamorphic-tectonic belts that overprint the terranes and batholiths.The terranes (from west to east) are: Buller, Takaka, Brook Street, Murihiku, Maitai, Caples, Bay of Islands (part of former Waipapa), Rakaia (older Torlesse) and Pahau (younger Torlesse). The western terranes are intruded by three composite batholith (>100 km2) sized belts of plutons: Karamea-Paparoa, Hohonu and Median, as well as by numerous smaller plutons. Median Batholith (including the Median Tectonic Zone) is a recently-recognised Cordilleran batholith that represents the site of subduction-related magmatism from ca. 375–110 Ma. Parts of the terranes and batholiths are variably metamorphosed and deformed: Devonian and Cretaceous amphibolite-granulite facies gneisses are present in Buller, Takaka, Median and Karamea-Paparoa units; Jurassic-Cretaceous subgreenschist-amphibolite facies Haast Schist overprints the Caples, Bay of Islands and Rakaia Terranes; Cretaceous subgreenschist facies Esk Head and Whakatane Mélanges bound the Pahau Terrane. In the South Island, small areas (<5 km2 total) of Devonian, Permian, Triassic and Jurassic Gondwana sequences have been identified. In the North Island a widespread Late Jurassic overlap sequence, Waipa Supergroup (part of former Waipapa Terrane), has recently been proposed. 相似文献
11.
12.
After a prolonged period of convergent margin tectonics in the Late Paleozoic and Mesozoic, resulting in terrane accretion, uplift and erosion of the New Zealand segment of Gondwana, the region saw a rapid change to extensional tectonics in mid-Cretaceous times. The change in regime is commonly marked by a major angular unconformity that separates the older, often strongly-deformed subduction-related ‘basement’ rocks from the younger, less-deformed ‘cover’ strata. The youngest ‘basement’ strata locally contain Albian fossils, and the youngest associated zircons have been radiometrically dated at ca. 100 Ma. In general the oldest strata overlying the unconformity contain fossils of similar Albian age, and the oldest radiometric dates also give similar dates of ca. 100 Ma, indicating a very rapid transition between the two tectonic regimes.The onset of extension resulted in the widespread development of grabens and half grabens, associated in the northwest of the South Island with a metamorphic core complex. In the west and south, on the thicker and more buoyant crust of most of the South Island, the new basins were infilled with mainly non-marine deposits. Non-marine graben infill consists of locally-derived breccia deposited as talus or debris flows on alluvial fans, passing directly as fan deltas or via fluvial deposits into lacustrine deposits. Active faulting continued in some areas until the initiation of sea floor spreading in Santonian times. Post-subduction strata on the thinner continental crust of the northeastern South Island and eastern North Island (East Coast Basin) were mainly marine. Initial sedimentary deposits in the west of the basin, reflecting extensional tectonism, consist of coarse-grained debris-flow deposits or olistostromes, generally fining upwards as tectonic activity waned: those in the east, including allochthonous sediments derived from the northeast, are dominated by turbidites. Early Cenomanian (ca. 96–98 Ma) injection of intraplate alkaline igneous rocks in central New Zealand caused updoming, resulting in shallowing and local uplift of the basin floor above sea level. A long (ca. 10 Ma) period of slow subsidence and transgressive marine sedimentation interrupted by episodic relative sea level changes followed.This pattern changed in the Late Coniacian (ca. 87–86 Ma), with a sudden influx of coarse, transgressive sands in eastern New Zealand. This was immediately preceded in parts of the region by uplift and erosion, probably driven by convective upwelling of the mantle just prior to sea-floor spreading, resulting in a ‘break-up’ unconformity. In the Late Santonian (ca. 85–84 Ma), development of a new, diachronous, widespread low-relief erosion surface, overlain by fine-grained deposits accompanying a rapid rise in relative sea level, coincided with the beginning of sea-floor spreading, rapid passive margin subsidence, and final separation of New Zealand from Gondwana. 相似文献
13.
石榴子石Lu-Hf年代学研究进展 总被引:1,自引:0,他引:1
高Lu/Hf比的石榴子石可以用于构筑高精度的Lu-Hf等时线,因而石榴子石Lu-Hf法被广泛地应用于各类岩石的定年研究中。特别是在造山带研究中,石榴子石Lu-Hf法揭示了许多其他定年体系所不能揭示的信息。但是由于石榴子石生长历史复杂,影响石榴子石 Lu-Hf 定年结果的因素多样,合理解释石榴子石Lu-Hf年龄指示的地质意义成为石榴子石Lu-Hf年代学研究的难点。这些因素包括石榴子石的生长模式、石榴子石的成核过程、封闭温度、包裹体、石榴子石生长历史、矿物间元素平衡、几何效应以及样品的预处理方法等。在进行石榴子石 Lu-Hf 定年研究时需要对这些因素进行综合的判定,才能对年龄做出合理的解释。本文初步探讨了这些因素对石榴子石 Lu-Hf 定年结果的影响,并以苏鲁-大别造山带为例介绍了石榴子石Lu-Hf年代学在碰撞造山带研究中的进展,揭示了石榴子石Lu-Hf体系在造山带及超高压变质研究中的巨大潜力。 相似文献
14.
Stable isotopic and fluid inclusion evidence for meteoric fluid penetration into an active mountain belt; Alpine Schist, New Zealand 总被引:2,自引:0,他引:2
Calcite and quartz veins have formed, and are forming, in steeply dipping fissures in the actively rising Alpine Schist metamorphic belt of New Zealand. The fluids that deposited these minerals were mostly under hydrostatic pressure almost down to the brittle-ductile transition, which has been raised to 5-6 km depth by rapid uplift. Some fluids were trapped under lithostatic pressures. Fluids in the fissure veins were immiscible H2 O + NaCl-CO2 mixtures at 200-350 C. Bulk fluid composition is 15-20 mol% CO2 and <4.3 total mol CH4 + N2 + Ar/100mol H2 O. Water hydrogen isotopic ratio δDH 2 O in the fissure veins spans -29 to -68‰, δ18 OH 2 O -0.7 to 8.5‰, and bulk carbon isotopic ratio δ13 C ranges from -3.7 to -11.7‰. The oxygen and hydrogen isotopic data suggest that the water has a predominantly meteoric source, and has undergone an oxygen isotope shift as a result of interaction with the host metamorphic rock. Similar fluids were present during cooling and uplift. Dissolved carbon is not wholly derived from residual metamorphic fluids; part may be generated by oxidation of graphite. 相似文献
15.
Pujun Wang Yanguang Ren Xuanlong Shan Shaobo Sun Chuanbiao Wan Weihua Bian 《Geological Journal》2002,37(2):97-115
With volume ratio of 8:1:1.5 amongst acidic, intermediate and basaltic rocks, the Cretaceous volcanics around the Songliao Basin are a series of high‐K or medium‐K, peraluminous or metaluminous, calc‐alkaline rocks, lacking typical basalts and peralkaline members of typical rift‐related types. Their eruption ages range between 133 and 127 Ma, 124 and 122 Ma and 117 and 113 Ma respectively. They are high in total (Rare earth element) REE contents (96.1–326 ppm), enriched in LREE and depleted in HREE (LREE/HREE = 4.6–13.8), with negative Eu and Ce anomalies (Eu/Eu* = 0.04–0.88; Ce/Ce* = 0.60–0.97). They have enriched large‐ion lithophile elements (e.g. K, Ba, Th) and depleted high field strength elements (e.g. Nb, Ti and Y), suggesting a subduction‐related tectonic setting. The volcanic activities migrated from south to north, forming a successively northward‐stepping volcanic series and showing a feature significantly different from the overlying sedimentary sequence striking northeast. Thus, an overlap basin model was proposed. Accompanied by opening of the basin, the volcanogenic succession was formed at the block‐faulting stage (131–113 Ma) owing to the closure of the Mongolia–Okhotsk ocean in the Jurassic and early Cretaceous, while the overlying sedimentary sequence was unconformably deposited at the spreading stage (Albian–Maastrichtian) owing to the oblique subduction of the Pacific plate under the Eurasian plate. The volcanic succession constitutes the lower unit of basin filling and is the forerunner of further basin spreading. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
16.
In contrast to the normal ‘Wilson cycle’ sequence of subduction leading to continental collision and associated mountain building, the evolution of the New Zealand plate boundary in the Neogene reflects the converse—initially a period of continental convergence that is followed by the emplacement of subduction. Plate reconstructions allow us to place limits on the location and timing of the continental convergence and subduction zones and the migration of the transition between the two plate boundary regimes. Relative plate motions and reconstructions since the Early to Mid-Miocene require significant continental convergence in advance of the emplacement of the southward migrating Hikurangi subduction—a sequence of tectonism seen in the present plate boundary geography of Hikurangi subduction beneath North Island and convergence in the Southern Alps along the Alpine Fault. In contrast to a transition from subduction to continental convergence where the leading edge of the upper plate is relatively thin and deformable, the transition from a continental convergent regime, with its associated crustal and lithospheric thickening, to subduction of oceanic lithosphere requires substantial thinning (removal) of upper plate continental lithosphere to make room for the slab. The simple structure of the Wadati–Benioff zone seen in the present-day geometry of the subducting Pacific plate beneath North Island indicates that this lithospheric adjustment occurs quickly. Associated with this rapid lithospheric thinning is the development of a series of ephemeral basins, younging to the south, that straddle the migrating slab edge. Based on this association between localized vertical tectonics and slab emplacement, the tectonic history of these basins records the effects of lithospheric delamination driven by the southward migrating leading edge of the subducting Pacific slab. Although the New Zealand plate boundary is often described as simply two subduction zones linked by the transpressive Alpine Fault, in actuality the present is merely a snapshot view of an ongoing and complex evolution from convergence to subduction. 相似文献
17.
Uranium–lead age patterns of detrital zircons in Otago Schist meta-sandstones from eastern Otago, including areas of orogenic gold mineralisation, are mostly consistent with a Rakaia Terrane (Torlesse Composite Terrane) accretionary wedge protolith. Southwest of the Hyde-Macraes and Rise & Shine shear zones the depositional age is regarded as Middle–Late Triassic. At the south and west margins, there are two areas in the Late Triassic Waipapa Terrane protolith. Northeast of the Hyde-Macraes Shear Zone, the schist protolith has Middle to Late Triassic and middle to late Permian depositional ages of Rakaia Terrane affinity. At the northeastern margin of the Hyde-Macraes Shear Zone, there is a narrow strip with a mid-Carboniferous protolith, which may be a counterpart of the Carboniferous accretionary wedge in the New England Orogen, eastern Australia. Ordovician–Silurian zircons are a minor but distinctive feature in many of the protolith age patterns and form significant age components at hard-rock gold locations. These constrain the provenance of Rakaia Terrane protolith sediments to Late Triassic time and within the Permian–Triassic magmatic arcs at the northeastern Australian continental margin and partly within the Ordovician–Silurian granitoids of the Charters Towers Province hinterland and environs. The latter have extensive gold mineralisation and thus upon exhumation might be the origin of Otago gold. 相似文献
18.
D. CRAW 《Journal of Metamorphic Geology》1988,6(1):1-16
Abstract Fluids, some of which are CO2 -rich (up to 40 mol.% CO2 ) and some of which are highly saline (up to 18 wt% NaCl equivalent), are trapped as fluid inclusions in quartz-calcite (∼ metallic minerals) veins which cross-cut the pumpellyite-actinolite to amphibolite facies rocks of the Alpine Schist. Fluids were commonly trapped as immiscible liquid-vapour mixes in quartz and calcite showing open-space growth textures. Fluid entrapment occurred at fluid pressures near 500 bars (possibly as low as 150 bars) at temperatures ranging from 260 to 330° C. Saline fluids may have formed by partitioning of dissolved salts into an aqueous phase on segregation of immiscible fluids from a low-density CO2 -rich fluid. Calcite deposited by these fluids has δ13 C ranging from – 8.4 to – 11.5 and δ18 O from + 4 to + 13. Isotopic data, fluid compositions and mode of occurrence suggest that the fluids are derived from high-grade metamorphic rocks. Fluid interaction with wall-rock has caused biotite crystallization and/or recrystallization in some rocks and retrogression of biotite to chlorite in other rocks.
Fluid penetration through the rock is almost pervasive in many areas where permeability, probably related to Alpine Fault activity, has focussed fluids on a regional scale into fractured rocks. The fluid flow process is made possible by high uplift-rates (in excess of 10 mm/year) bringing hot rocks near to the surface. 相似文献
Fluid penetration through the rock is almost pervasive in many areas where permeability, probably related to Alpine Fault activity, has focussed fluids on a regional scale into fractured rocks. The fluid flow process is made possible by high uplift-rates (in excess of 10 mm/year) bringing hot rocks near to the surface. 相似文献
19.
Leaching processes are believed to be responsible for the unusually low-ash content (sometimes less than 1%) of the thick (up to 35 m) Cretaceous coals located in the Greymouth coalfield, South Island, New Zealand. Although leaching of inorganics in peat is a generally accepted process, little is known about leaching after burial. The “Main” and “E” seams in the Greymouth coalfield show good correlation between low ash and bed thickness. The ash content, however, is often less than 1%, which is lower than most known modern analogues (i.e. peat). There are several lines of evidence that suggest that mineral matter may have been removed from the coal not only in the peat stage but also after burial. For example, etching features found in quartz grains and clay aggregates indicate that some leaching processes have taken place. In addition, liptinitic material (e.g., bitumen) in the cleat networks supports the conclusion that there has been some movement of solutions through the coal after burial. These solutions may have helped to remove some of the inorganics originally within the Greymouth coals. 相似文献
20.
L. J. Phillips C. Verdel C. M. Allen J. S. Esterle 《Australian Journal of Earth Sciences》2018,65(4):465-481
The late Carboniferous to Triassic tectonic history of eastern Australia includes important periods of regional-scale crustal extension and contraction. Evidence for these periods of tectonism is recorded by the extensive Pennsylvanian (late Carboniferous) to Triassic basin system of eastern Australia. In this study, we investigate the use of U–Pb dating of detrital zircons in reconstructing the tectonic development of one of these basins, the eastern Galilee Basin of Queensland. U–Pb detrital zircon ages were obtained from samples of stratigraphically well-constrained Cisuralian and Lopingian (early and late Permian, respectively) sandstone in the Galilee Basin. Detrital zircons in these sandstones are dominated by a population with ages in the range of 300–250 Ma, and ages from the youngest detrital zircons closely approximate depositional ages. We attribute these two fundamental findings to (1) appreciable derivation of detrital zircons in the Galilee Basin from the New England Orogen of easternmost Australia and (2) syndepositional magmatism. Furthermore, Cisuralian sandstone of the Galilee Basin contains significantly more >300 Ma detrital zircons than Lopingian sandstone. The transition in detrital zircon population, which is bracketed between 296 and 252 Ma based on previous high-precision U–Pb zircon ages from Permian ash beds in the Galilee Basin, corresponds with the Hunter–Bowen Orogeny and reflects a change in the Galilee Basin from an earlier extensional setting to a later foreland basin environment. During the Lopingian foreland basin phase, the individual depocentres of the Galilee and Bowen basins were linked to form a single and enormous foreland basin that covered >300 000 km2 in central and eastern Queensland. 相似文献