首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Twenty two samples of calcretes from seven depth-profiles in the Menindee catchment, Broken Hill region, Australia were analysed for their inorganic and organic carbon contents and inorganic carbon and oxygen isotopes. The organic carbon content is very low (from 0.06 to 0.31 wt.%) while inorganic carbon (carbonate) is up to 3.9 wt.%. Both δ13C and δ18O become more positive closer to the surface. Carbon isotopes vary from − 8.5‰ to −5.5‰ PDB. Oxygen isotopes vary from − 6‰ to − 1.8‰ V-PDB. Depth-related δ13C and δ18O variations correlate over at least 15 km and show no significant variation along the flow path. δ13C values increase by 3‰ and δ18O values increase by 4‰ with decreasing depth in a 1.40 m thick soil profile. The variation is interpreted to indicate an increasingly elevated air temperature, greater water stress and subsequently an aridification of the area through time. The Broken Hill calcrete data confirm that climatic evolution can be deduced from isotopic series and be applied successfully to the Broken Hill region.  相似文献   

2.
Coal-derived hydrocarbons from Middle–Lower Jurassic coal-bearing strata in northwestern China are distributed in the Tarim, Junggar, Qaidam, and Turpan-Harmi basins. The former three basins are dominated by coal-derived gas fields, distributed in Cretaceous and Tertiary strata. Turpan-Harmi basin is characterized by coal-derived oil fields which occur in the coal measures. Based on analysis of gas components and carbon isotopic compositions from these basins, three conclusions are drawn in this contribution: 1) Alkane gases with reservoirs of coal measures have no carbon isotopic reversal, whereas alkane gases with reservoirs not of coal measures the extent of carbon isotopic reversal increases with increasing maturity; 2) Coal-derived alkane gases with high δ13C values are found in the Tarim and Qaidam basins (δ13C1: − 19.0 to − 29.9‰; δ13C2: − 18.8 to − 27.1‰), and those with lowest δ13C values occur in the Turpan-Harmi and Junggar basins (δ13C1: − 40.1 to − 44.0‰; δ13C2: − 24.7 to − 27.9‰); and 3) Individual specific carbon isotopic compositions of light hydrocarbons (C5–8) in the coal-derived gases are lower than those in the oil-associated gases. The discovered carbon isotopic reversal of coal-derived gases is caused by isotopic fractionation during migration and secondary alteration. The high and low carbon isotopic values of coal-derived gases in China may have some significance on global natural gas research, especially the low carbon isotope value of methane may provide some information for early thermogenic gases. Coal-derived methane typically has much heavier δ13C than that of oil-associated methane, and this can be used for gas–source rock correlation. The heavy carbon isotope of coal-derived ethane is a common phenomenon in China and it shed lights on the discrimination of gas origin. Since most giant gas fields are of coal-derived origin, comparative studies on coal-derived and oil-associated gases have great significance on future natural gas exploration in the world.  相似文献   

3.
Si stable isotopes in the Earth's surface: A review   总被引:2,自引:0,他引:2  
Silicon (Si) is the second most abundant element on Earth after oxygen. Only few studies have attempted to use stable isotopes of Si as proxies for understanding the Si cycle and its variations in the past. By using three different methods (IRMS, MC–ICP–MS and SIMS), the overall measurements show that the isotopic composition (δ30Si) of terrestrial samples ranges from − 5.7‰ to + 3.4‰. Dissolved Si in rivers and seawater is 30Si-enriched (− 0.8‰ < δ30Si < + 3.4‰) compared to Si in endogeneous rocks (− 1.1‰ < δ30Si < + 0.7‰). This global enrichment is counterbalanced by the Si-bearing phases (biogenic silica, clays, quartz) where Si is, in average, 30Si-depleted (− 5.7‰ < δ30Si < + 2.6‰). These values are the result of fractionation which have been measured or estimated from − 0.3‰ to − 3.8‰. The fractionation is modeled by two types of approaches: the Rayleigh distillation model (closed system) and the steady-state model (open system). These models have been used in the most recent studies to explain the observed δ30Si variations in continental environments and in the sub-Antarctic Ocean.  相似文献   

4.
This study was undertaken to determine whether wallrocks around the Twin Creeks Carlin-type gold deposits exhibit oxygen isotope haloes similar to those found around other types of hydrothermal deposits. Mineralization at Twin Creeks is hosted by Ordovician Sequence shales containing some carbonate minerals and by Pennsylvanian–Permian Etchart Formation limestone. Analysis of orthophosphate-soluble carbonate from these rocks shows that oxygen isotope haloes are detectable in Ordovician Sequence shales but not in Etchart Formation limestone. The soluble fraction of Ordovician Sequence shales at Twin Creeks has δ18O values of 12 to 24‰ and δ13C values of 0 to −10‰. Most samples fall along a poorly defined trend that extends from δ18O of about 24‰ and δ13C values of about 0, which are typical of unaltered limestones, toward lower values for both isotope systems, which are typical of rocks that have undergone alteration by hydrothermal fluids. Plots of these values along two sections through the ore body show that δ18O values of wallrocks are lowest in the ore zone and increase outward, forming a halo several hundred meters in size. In the same plots, δ13C values of the wallrocks do not show systematic spatial variations. The soluble fraction of Etchart Formation limestones at Twin Creeks have δ18O values of 25 to 5‰ and δ13C values of 4 to −10‰, but do not show any systematic spatial variation relative to mineralization at the scale of our samples. Failure of the Etchart Formation samples to show detectable haloes is probably related to deposition of post-ore carbonate minerals or lower ore fluid : rock ratios. Material balance calculations used to model the isotopic composition of average Ordovician Sequence shales indicate that changes in temperature and water : rock ratio were probably not sufficient to account for the wide range of isotope compositions observed in these rocks. The most likely additional factor contributing to this range of values was a change in the composition of the altering fluid, probably by mixing of the ore fluid with surrounding meteoric water. These results suggest that Carlin-type gold deposits are surrounded by haloes of low δ18O values, but that detection of these haloes could be complicated by local compositional variations and post-ore modification of the wallrocks.  相似文献   

5.
Groundwaters and surface water in the Shihongtan sandstone-hosted U ore district, Xinjiang, NW China, were sampled and analyzed for their major-, and trace element concentrations and oxygen, hydrogen, boron and strontium isotope compositions in order to assess the possible origins of the waters and water–rock interactions that occurred in the deep aquifer system. The waters in the study district have been grouped into three hydrochemical facies: Facies 1, potable spring-water, is a pH neutral (7.0), Na–Ca–HCO3 type water with low total dissolved solids (TDS; 0.2 g/l, fresh) and has δ18O of − 8.3‰, δD of − 48.2‰,δ11B of 1.5‰, and 87Sr/86Sr of 0.70627. Facies 2 groundwaters are mildly acidic to mildly alkaline (pH of 6.5–8.0, mean 7.3), Na–Ca–Mg–Cl–SO4 type waters with moderate TDS (8.2 g/l–17.2 g/l, mean 9.3 g/l, brackish) and haveδ18O values in the − 5.8‰ to − 9.3‰ range (mean − 8.1‰), δD values in the − 20.8‰ to − 85.5‰ range (mean − 47.0‰),δ11B values in the + 9.5‰ to + 39.1‰ range (mean + 17.1‰), and 87Sr/86Sr values in the 0.70595 to 0.70975 range (mean 0.70826). Facies 3, Aiting Lake water, is a mildly alkaline (pH = 7.4), Na–Ca–Mg–Cl–SO4 type water with the highest TDS (249.1 g/l, brine) and has δ18O of − 2.8‰, δD of − 45.8‰,δ11B of 21.2‰, and 87Sr/86Sr of 0.70840. The waters from the study district show a systematic increase in major, trace element and TDS concentrations and δ11B values along the pathway of groundwater migration which can only be interpreted in terms of water–rock interaction at depth and strong surface evaporation. The hydrochemical and isotopic data presented here confirm that the groundwaters in the Shihongtan ore district are the combined result of migration, water–rock interaction and mixing of meteoric water with connate waters contained in sediments.  相似文献   

6.
Oxygen isotope studies were carried out across units of a Neoproterozoic nappe system, south of São Francisco Craton. A temperature decrease toward the base of the system is found, consistent with a previously recognized inverted metamorphic pattern. The tectonic contact of the basal unit and the reworked southern São Francisco craton show a steep temperature gradient, suggesting that low temperature thrusting acted as the dominant tectonic process. The contrasts between the δ18O values of the Três Pontas-Varginha and Carmo da Cachoeira nappes and the differences among the samples and minerals are consistent with the preservation of sedimentary isotopic composition during metamorphism. The small differences in the δ18O values between the undeformed and the deformed calc-silicate samples (1.6‰) suggest that the δ18O value of mylonitization fluids was close to that which equilibrated with the metamorphic assemblage. The distinct δ18O values of metapelitic and calc-silicate samples and the great temperature difference from one type to the other indicate that no large-scale fluid interaction processes occurred during metamorphism. Oxygen isotopic estimations of both Três Pontas-Varginha undeformed rocks and Carmo da Cachoeira unaltered equivalents indicate δ18O values of up to 18‰. Comparison between these values and those from the ‘basement’ orthogneisses (8.3–8.5‰) indicates the latter are not sources for the metapelites.  相似文献   

7.
Fluid inclusion studies combined with the isotope geochemistry of several generations of fracture calcite from the Olkiluoto research site, Finland, has been used to better understand the past thermal and fluid history in the crystalline rock environment. Typically, fracture mineral investigations use O and C isotopes from calcite and an estimate of the isotopic composition of the water that precipitated the calcite to perform δ18O geothermometry calculations to estimate past temperature conditions. By combining fluid inclusion information with calcite isotopes, one can directly measure the temperature at which the calcite formed and can better determine past fluid compositions. Isotopic, petrologic and fluid inclusion studies at the Olkiluoto research site in Finland were undertaken as part of an investigation within the Finnish nuclear waste disposal program. The study revealed that four fluids were recorded by fracture calcites. From petrologic evidence, the first fluid precipitated crystalline calcite at 151–225°C with a δ13C signature of −21 to −13.9‰ PDB and a δ18O signature of 12.3–13.0‰ SMOW. These closed fracture fillings were found at depths greater than 500 m and were formed from a high temperature, low salinity, Na–Cl fluid of possible meteoric water altered by exchange with wallrock or dilute basinal origin. The next fluid precipitated crystalline calcite with clay at 92–210°C with a δ13C signature of −2.6 to +3.8‰ PDB and a δ18O signature of 19.4–20.7‰ SMOW. These closed fracture fillings were found at depths less than 500 m and were formed from a moderate to high temperature, low to moderate salinity, Na–Cl fluid, likely of magmatic origin. The last group of calcites to form, record the presence of two distinct fluid types. The platy (a) calcite formed at 95–238°C with a δ13C signature of −12.2 to −3.8‰ PDB and a δ18O signature of 14.9–19.6‰ SMOW, from a high temperature, low salinity, Na–Cl fluid of possible magmatic origin. The platy (b) calcite formed at 67–98°C with a δ13C signature of −13.0 to −6.2‰ PDB and a δ18O signature of 15.1–20.1‰ SMOW, from a low temperature, high salinity, Ca–Na–Cl fluid of possible basinal brine origin. The two calcites are related through a mixing between the two end members. The source of the fluids for the platy grey (a) calcites could be the olivine diabase dykes and sills that cut through the site. The source of fluids for the platy (b) calcites could be the Jotnian arkosic sandstone formations in the northern part of the site. At the Olkiluoto site, δ18O geothermometry does not agree with fluid inclusion data. The original source of the water that forms the calcite has the largest effect on the isotopic signature of the calcites formed. Large isotopic shifts are seen in any water by mineral precipitation during cooling under rock–water equilibrium fractionation conditions. Different calcite isotopic signatures are produced depending on whether cooling occurred in an open or closed system. Water–rock interaction, at varying W/R ratios, between a water and a host rock can explain the isotopic shifts in many of the calcites observed. In some cases it is possible to shift the δ18O of the water by +11.5‰ (SMOW) using a realistic water–rock ratio. This process still does not explain some of the very positive δ18O values calculated using fluid inclusion data. Several other processes, such as low temperature recrystallization, boiling, kinetic effects and dissolution of calcite from fluid inclusion walls can affect isotopic signatures to varying degrees. The discrepancy between fluid inclusion data and δ18O geothermometry at the Olkiluoto site was most likely due to poor constraint on the original source of the water.  相似文献   

8.
Aerobic methanotrophy at ancient marine methane seeps: A synthesis   总被引:2,自引:0,他引:2  
The molecular fingerprints of the chemosynthesis based microbial communities at methane seeps tend to be extremely well preserved in authigenic carbonates. The key process at seeps is the anaerobic oxidation of methane (AOM), which is performed by consortia of methanotrophic archaea and sulphate reducing bacteria. Besides the occurrence of 13C depleted isoprenoids and n-alkyl chains derived from methanotrophic archaea and sulphate reducing bacteria, respectively, 13C depleted triterpenoids have been reported from a number of seep deposits. In order to evaluate the significance of these apparently non-AOM related molecular fossils, the biomarker inventories of one Campanian and two Miocene methane seep limestones are compared. These examples provide strong evidence that methane was not solely oxidized by an anaerobic process. Structural and carbon isotope data reveal that aerobic methanotrophy was common at some ancient methane seeps as well. The Miocene Marmorito limestone contains abundant 3β-methylated hopanoids (δ13C: −100‰). Most likely, 3β-methylated hopanepolyols, prevailing in aerobic methanotrophs, were the precursor lipids of these compounds. A series of isotopically depleted 4-methylated steranes (lanostanes; δ13C: −80‰ to −70‰) and similarly isotopically depleted 17β(H),21β(H)-32-hopanoic acid in the Miocene Pietralunga seep limestone also are derived probably from aerobic methanotrophs. Lanosterol, which is known to be produced by aerobic methanotrophs, is the most likely precursor of 4-methylated steranes. Less obvious is the origin of 8,14-secohexahydrobenzohopanes (δ13C: −110‰ to −107‰) in Late Cretaceous seep limestones. These hopanoids probably reflect early degradational products of precursor lipids locally produced by seep endemic aerobic methanotrophs.  相似文献   

9.
The CO2 gas reservoir sandstones in the Hailaer Basin contain abundant dawsonite and provide an ideal laboratory to study whether any genetic relationship exists between dawsonite and the modern gas phase of CO2. The origins of dawsonite and CO2 in these sandstones were studied by petrographic and isotopic analysis. According to the paragenetic sequence of the sandstones, dawsonite grew later than CO2 charging at 110–85 Ma. The dawsonite δ18O value is 7.4‰ (SMOW), and the calculated δ18O values of the water present during dawsonite growth are from −11.4‰ to −9.2‰ (SMOW). This, combined with the NaHCO3-dominated water linked to dawsonite growth, suggests meteoric water being responsible for dawsonite growth. The δ13C values of gas phase CO2 and the ratios of 3He/4He of the associated He suggest a mantle magmatic origin of CO2-rich natural gas in Hailaer basin. Dawsonite δ13C values are −5.3‰ to −1.5‰ (average −3.4‰), and the calculated δ13C values of CO2 gas in isotopic equilibrium with dawsonite are −11.4‰ to −7.3‰. These C isotopic values are ambiguous for the dawsonite C source. From the geological context, the timing of events, together with formation water conditions for dawsonite growth, dawsonite possibly grew in meteoric-derived water, atmospherically-derived CO2 maybe, or at least the dominant, C source for dawsonite. It seems that there are few relationships between dawsonite and the modern gas phase of CO2 in the Hailaer basin.  相似文献   

10.
The middle Cenomanian–lower Turonian deposits of Ohaba-Ponor section (Southern Carpathians) were studied from biostratigraphic and isotopic points of view. Both the qualitative and semiquantitative nannofloral analyses, as well as the stable isotope (δ13C and δ18O) data support significant palaeoenvironmental changes in the investigated interval. Two δ13C positive excursions were recognized: (1) an excursion up to 1.8‰ (PDB) within the middle/late Cenomanian boundary; (2) an excursion up to 2.2‰ (PDB) in the Cenomanian/Turonian boundary interval. The oldest δ13C positive excursion recorded (placed within the Acanthoceras jukes-brownei/Eucalycoceras pentagonum Ammonite Zone boundary interval, and in the NC11 Calcareous Nannofossil Zone respectively) could be assigned to the middle Cenomanian Event II (MCEII). During the above-mentioned event, significant increase in abundance of Watznaueria barnesae, followed by successive blooms of Biscutum constans and Eprolithus floralis, were observed. The youngest δ13C positive excursion was identified in the Cenomanian/Turonian boundary interval (in the NC12 and lower part of the NC13 Calcareous Nannofossil Zones). Even the amplitude of this δ13C positive excursion is lower in the Ohaba-Ponor section, as generally reported, this may represent the regional record of the OAE2. The successive peaks of the nannofossils Biscutum constans, Zeugrhabdotus erectus and Eprolithus floralis indicate episodes of cooler surface water and high fertility, which preceded and lasted the Cenomanian/Turonian boundary event. Additionally, fluctuations of δ18O values between −2 and −6‰ suggest also cooler conditions within the Cenomanian/Turonian boundary interval.  相似文献   

11.
Miocene igneous rocks (diorites, andesites, dacites, rhyolites and microgranites) of Chetaibi and Cap de Fer massif, NE Algeria, are high-K calc-alkaline to shoshonitic rocks. Fresh diorites have δ34S and δ18O values ranging between −2.5‰ and +5.9‰, +6.5‰ and +6.7‰ respectively, indicating a mantle origin. The relatively low δ34S values (−5.4‰ to −12.2‰) and high δ18O (+8.3‰ to +9.0‰) of altered diorites indicate the input of a crustal component to the initial magma. The microgranites’ I-type signature is indicated by the geochemical data and the δ34S and δ18O values of −1.2‰ and −3.6‰, and +7.8‰ to +10.4‰ respectively. The andesites show a large variation of δ34S, between −33.2‰ and +25.7‰. Massive andesites with δ34S between +6.8‰ and +7.6‰ preserve a 34S-enriched mantle signature. The δ34S of the lava flows between +25.7‰ and +25.8‰ are attributed to open system magma degassing, whereas the low δ34S of two andesitic dyke samples (−13.7‰ and −33.2‰) strongly suggest a crustal sulphur input. High δ18O (+9.2‰ to +15.7‰) of andesites indicate post-magmatic alteration (mainly silicification); the flyschs with δ18O between of +13.3‰ and +21.7‰ are most likely the contaminant. Quartz veins within the andesites gave a δ18O value of +23.0‰ while silica-filling vesicles yielded a value of +13.8‰. Initial Sr-isotope data are rather high for all the rocks (diorites: 0.707–0.708, andesites: 0.707–0.710, and microgranites and rhyolites: 0.717–0.719), and because geochemical and stable isotope data do not indicate a substantial amount of crustal assimilation, an extensive enrichment of the mantle source by subducted sediments is called for. A metasomatized-mantle source, characterized by high radiogenic Sr and relatively high δ18O, has also been indicated for the genesis of similar Tertiary igneous rocks in the Western Mediterranean basin, e.g. the Volcanic Province of southeasten Spain [Benito, R., Lopez-Ruiz, J., Cebria, J.M., Hertogen, J., Doblas M., Oyarzun, R., Demaiffe, D., 1999. Sr and O isotope constraints on source and crustal contamination in the high-K calc-alkaline and shoshonitic neogene volcanic rocks of SE Spain. Lithos 46, 773–802] and some plutons of northeastern Algeria [Ouabadi, A., 1994. Pétrologie, géochimie et origine des granitoïdes peralumineux à cordiérite (Cap Bougaroun, Béni-Touffout et Filfila), Algérie nord-orientale. Thèse de Doctorat, Université de Rennes I, France, 257p; Fourcade, S., Capdevila, R., Ouabadi, A., Martineau, F., 2001. The origin and geodynamic significance of the Alpine cordierite-bearing granitoids of northern Algeria. A combined petrological, mineralogical, geochemical and isotopic (O, H, Sr, Nd) study. Lithos 57, 187–216].  相似文献   

12.
Black and white dolomite crystals (mm to cm width) of different isotopic composition are associated with Triassic diapirism in central Tunisia, as well as with evaporite minerals and clays. The white dolomites occur mostly in the Jabal Hadifa diapir near the contact with Cretaceous limestones, whereas the smaller black dolomites occur in the Jabal Hamra diapir. The former dolomite has a narrow range of δ18O and δ13C values (− 3.83‰ to − 6.60‰ VPDB for δ18O; − 2.11‰ to − 2.83‰ VPDB for δ13C), whereas the latter dolomite has a wider range and more depleted values (− 4.92‰ to − 9.97‰ for δ18O; − 0.55‰ to − 6.08‰ for δ13C). However, the 87Sr / 86Sr ratios of most of the samples are near Triassic seawater values. Dolomite formation is due to at least two different fluids. The main fluid originated from deeper hydrothermal or basinal sources related to the Triassic saliferous rocks and ascended through faults during the diapiric intrusion. The second, less important fluid source is related to meteoric water originating from Cretaceous rocks.  相似文献   

13.
The Attepe district consists of Precambrian, Lower–Middle Cambrian, Upper Cambrian–Lower Ordovician and Mesozoic formations. It contains several iron deposits and occurrences. Three types of iron-mineralizations can be distinguished in the area; (i) Sedimentary Fe-sulfide in Precambrian bituminous metapelitic rocks, and Fe-oxides in Precambrian metasandstones (SISO), (ii) vein-type Fe-carbonate and oxides composed of mainly siderite, ankerite and hematite including barite in Lower–Middle Cambrian metacarbonates of the Çaltepe Formation (HICO), (iii) karstic Fe-oxides and hydroxides essentially in the Lower–Middle Cambrian metacarbonates and the unweathered Fe-carbonates (KIO). The latter type is more widespread and located at the upper parts of the most important mineable iron deposits like Attepe deposit.

Oxygen-, carbon-, sulfur- and strontium-isotope studies have been performed on siderites and barites in the vein-type ores, and on calcites in the recrystallized Çaltepe Limestones to investigate the sources and formation mechanism of primary ore-forming constituents. The δ13C values of siderites and calcites in limestones of the Çaltepe Formation range from −10.10‰ to −8.20‰, and from −0.8‰ to 2.30‰. Both carbonate minerals show δ18O values between 17.50–18.30‰ and 16.20–23.00‰, respectively. The δ13C and δ18O isotopic variations do not indicate any direct or linear relations between siderites and limestones. However, it is possible that the carbon and oxygen isotopic compositions of carbonate minerals could be changed to some extent, when limestones were subjected to hydrothermal processes or thermal alterations during metamorphism.

The isotopic values of barites display 32.40–38.30‰ for δ34S and 12.20–14.70‰ for δ18O. The strontium isotope ratios (0.717169–0.718601) of barites and the sulfur isotope compositions of barites and pyrites suggest that there are no direct linkages of ore-forming compounds neither with a magmatic source nor with sedimentary pyrite formations in the Precambrian bituminous shales of the Attepe formation.

According to the field observations and the stable isotope data, siderites and ankerites should be formed by interaction between iron-rich hydrothermal fluids and Çaltepe limestones, whereas isotope ratios of barites indicate that they were formed by mixing of sulfur-rich meteoric waters and deeply circulated hydrothermal solutions.  相似文献   


14.
The calcite cement in the Lower Ordovician Majiagou Formation in the Ordos basin in northern China can be subdivided into three groups based on preliminary results of oxygen and carbon isotopes and fluid inclusion microthermometry. Group 1 has low oxygen isotopes (− 14‰ to − 18‰), low Th values (92–103 °C), and low salinities (1.7–4.9 wt.% NaCl equivalent) and is interpreted to have precipitated during early burial from porewater influenced by meteoric water. Group 2 has much higher oxygen isotope values (− 5‰ to − 8‰), which, coupled with the higher Th values (136–151 °C), suggest that the calcite was precipitated from fluids that were significantly enriched in 18O, possibly resulting from fluid–rock reaction during burial. Group 3 occurring along fractures is characterized by high salinities (21–28 wt.% NaCl equivalent) and is interpreted to have been precipitated from locally preserved residual evaporitic brines. The occurrence of primary hydrocarbon inclusions and its low carbon isotopes (− 11‰ to − 15‰) suggest that precipitation of group 3 calcite took place in the presence of hydrocarbons.  相似文献   

15.
Chemical and isotopic compositions have been measured on 62 microbial gases from Tertiary hemipelagic sediments in the Middle America Trench off Guatemala and from decaying kelp and surf grass currently accumulating in Scripps Submarine Canyon off southern California. Gases from the Middle America Trench have been generated primarily by the reduction of carbon dioxide; methane δ13C varies from −84‰ to −39‰, methane δD varies from −208‰ to −145‰, and carbon dioxide δ13 C varies from −27‰ to +28‰. Gases from Scripps Submarine Canyon have been generated primarily by acetate dissimilation; methane δ13 C varies from −63‰ to −43‰, methane δD varies from −331‰ to −280‰, and carbon dioxide δ13C varies from −17‰ to +3‰.Methane δ13C values as heavy as −40‰ appear to be uncommon for gases produced by carbon dioxide reduction and, in the Middle America Trench, are associated with unusually positive carbon dioxide δ13C values. However, based on the 25‰ intramolecular fractionation between acetate car☐yl carbon and methyl carbon estimated from the Scripps Submarine Canyon data, methane produced by acetate dissimilation may commonly have heavy δ13C values. The δD of methane derived from acetate is more negative than natural methanes from other origins. Microbial methane δD values appear to be controlled primarily by interstitial water δD and by the relative proportions of methane derived from carbon dioxide and acetate.The chemical and isotopic compositions of microbial gas and thermogenic gas overlap, making it difficult to determine the origins of many commercial natural gases from methane δ13C and C2+ hydrocarbon concentrations alone. Measurements of methane δD and carbon dioxide δ13C can provide useful additional information, and together with ethane δ13C data, help identify gases with mixed microbial and thermogenic origins.  相似文献   

16.
Located at western portion of northern margin of North China craton, the Baotou–Bayan Obo district is one of the most important Fe–REE–Nb and Au metallogenic provinces in China. Presently, about 52 gold deposits and prospects have been discovered, explored and mined, among which Shibaqinhao, Laoyanghao, Houshihua, Saiyinwusu, Wulashan and Donghuofang are the most important ones. All these gold occurrences can be subdivided into three groups (or types) according to its host rocks: (1) hosted by Archean high-grade metamorphic rocks; (2) hosted by Proterozoic sedimentary rocks; (3) hosted by or related to Hercynian alkaline intrusive rocks. The first group contains the Shibaqinhao, Laoyanghao and Houshihua gold deposits. Gold mineralization at these three deposits occurs within Archean amphibolite, gneiss and granulite as gold-bearing quartz veins and veinlet groups containing native gold, electrum, pyrite and chalcopyrite. The Saiyinwusu deposit belongs to the second group, and occurs within Proterozoic sandstone, quartzite and carbonaceous slate as quartz veins and replacement bodies along the fracture zones. Pyrite, marcasite, arsenopyrite, native gold and electrum are identified. The third group includes the Wulashan, Donghuofang and Luchang deposits. Gold mineralization at these three deposits occurs predominantly within the Hercynian alkaline syenite or melagabbro stocks and dyke swarms or along their contacts with Archean metamorphic wall rocks as K-feldspar–quartz veins, dissemination and veinlets. Pyrite, galena, chalcopyrite, native gold and calaverite are major metallic minerals.δ34S value of sulfides (pyrite, galena and pyrrhotite) separates from groups 1 and 2 varies from −4.01‰ to −0.10‰ and −3.01‰ to 2.32‰, respectively. δ34S values of Archean and Proterozoic metamorphic wall rocks for groups 1 and 2 deposits range from −20.2‰ to −17.0‰ and −15.8‰ to −16.2‰, respectively. The values are much lower than their hosted gold deposits. All these pyrite separates from Hercynian alkaline intrusions associated with the gold deposits show positive δ34S values of 1.3‰ to 4.8‰, which is higher than those Precambrian metamorphic wall rocks and their hosted gold deposits. δ34S values of the sulfides (pyrite and galena) from the Donghuofang and Wulashan deposits (group 3) increase systematically from veins (−14.8‰ to −2.4‰) to the Hercynian alkaline igneous wall rocks (2.8‰ to 4.8 ‰). All of these deposits in groups 1, 2 and 3 show relatively radiogenic lead isotopic compositions compared to mantle or lower crust curves. Most lead isotope data of sulfides from the gold ores plot between the Hercynian alkaline intrusions and Precambrian metamorphic wall rocks. Data are interpreted as indicative of a mixing of lead from mantle-derived alkaline magma with lead from Precambrian metamorphic wall rocks.Isotopic age data, geological and geochemical evidence suggest that the ore fluids for the groups 1 and 2 deposits were generated during the emplacement of the Hercynian alkaline syenite and mafic intrusions. The Hercynian alkaline magma may provide heat, volatiles and metals for these groups 1 and 2 deposits. Evolved metamorphic fluids produced by the devolatilization, which circulated the wall rocks, were also progressively involved in the alkaline magmatic hydrothermal system, and may have dominate the ore fluids during late stage of ore-forming processes. Most of these gold deposits hosted by Archean high-grade metamorphic rocks occur at or near the intersections of the NE- and E–W-trending fracture systems. The ore fluid of the group 3 deposits may have resulted from the mixing of Hercynian alkaline magmatic fluids and evolved meteoric waters. The deposits are believed to be products of Hercynian alkaline igneous processes along deep-seated fault zones within Archean terrain.  相似文献   

17.
The δ18O and δ13C values of the calcites associated with E-W and NE-SW transverse faults in the Negev, Israel, indicate that calcite was deposited from meteoric water. A regional change in the δ18O and δ13C values was observed. The 18O content in the calcite increases, from the southwestern (δ18O = −17.8‰) to the northeastern (δ18O = −2.9‰) part of the region. The δ13C values show the opposite trend of the 13C content decrease: from +2‰ in the south to −10‰ in the northeast. These trends had to reflect changes in regional paleoclimate, suggesting a change in the isotopic composition of the solution from which the calcite was deposited in different periods. The variations in the δ18O values reflect shifts in the δ18O values of precipitation and are associated with a change in the source of moist air masses which came from the equatorial Atlantic in the early Pleistocene and from the Mediterranean during a later period. Variations in δ13C values reflect changes from humid to arid conditions. Two modes of calcite deposition are suggested: (1) precipitation of calcite minerals in the unsaturated zone following the dissolution in the soil or (2) calcite deposition that occurred as CO2 was lost during emergence of paleogroundwater from Lower Cretaceous and Jurassic aquifers.  相似文献   

18.
This paper describes unusual graphite–sulfide deposits in ultramafic rocks from the Serranía de Ronda (Spain) and Beni Bousera (Morocco). These deposits occur as veins, stockworks and irregular masses, ranging in size from some centimeters to a few meters in thickness. The primary mineral assemblage mainly consists of Fe–Ni–Cu sulfides (pyrrhotite, pentlandite, chalcopyrite and cubanite), graphite and chromite. Weathering occurs in some sulfide-poor deposits that consist of graphite (up to 90%), chromite and goethite. Texturally, graphite may occur as flakes or clusters of flakes and as rounded, nodule-like aggregates. Graphite is highly crystalline and shows light carbon isotopic signatures (δ13C≈− 15‰ to − 21‰). Occasionally, some nodule-like graphite aggregates display large isotopic zoning with heavier cubic forms (probably graphite pseudomorphs after diamond with δ13C up to − 3.3‰) coated by progressively lighter flakes outwards (δ13C up to − 15.2‰).Asthenospheric-derived melts originated the partial melting (and melt–rock reactions) of peridotites and pyroxenites generating residual melts from which the graphite–sulfide deposits were formed. These residual melts concentrated volatile components (mainly CO2 and H2O), as well as S, As, and chalcophile elements. Carbon was incorporated into the melts from the melt–rock reactions of graphite-bearing (formerly diamonds) garnet pyroxenites with infiltrated asthenospheric melts. Graphite-rich garnet pyroxenites formed through the UHP transformation of subducted kerogen-rich crustal material into the mantle. Thus, graphite in most of the studied occurrences has light (biogenic) carbon signatures. Locally, reaction of the light carbon in the melts with relicts of 13C-enriched graphitized diamonds (probably generated from hydrothermal calcite veins in the subducting oceanic crust) reacted with the partial melts to form isotopically zoned nodule-like graphite aggregates.  相似文献   

19.
Heterogeneous shallow Plio-Quaternary formations of the Souss Plain represent the most important aquifer in southern High Atlas Mountains in Morocco. The present work was conducted in the Souss Upstream Basin to identify the chemical characteristics and the origin of groundwater in an aquifer under semi-arid climate. Isotopic and hydrochemical compositions combined with geological and hydrogeological data were used for this purpose. The total dissolved solids vary from 239 to 997 mg l−1, and the following groundwater types are recognized: Ca2+–Mg2+–HCO3, Ca2+–Mg2+–SO42− and Ca2+–Mg2+–Cl. The groundwater is saturated and slightly supersaturated with respect to carbonate minerals and undersaturated with respect to evaporite minerals, which means that the groundwater composition is largely controlled by the dissolution of carbonate rocks known in the basin. The isotopic contents of groundwaters ranged from −8‰ to −5.2‰ for δ18O, from −52‰ to −34‰ for δD, and from 0 to 5.5 TU for tritium. The hydrogen (δD) and oxygen (δ18O) isotope signatures reveal a significant infiltration before evaporation takes place, indicating a major recharge directly from fractures in the crystalline and limestone formations of Atlas Mountains (above 800 m a.s.l.) and infiltration of surface water in the alluvial cones at the border of the Atlas basins. The very low tritium values suggest that the groundwater recharge follows a long flow path and a mixing between old and modern water is shown. However, a slight evaporation effect is noted in the southern part of the basin close to the Anti-Atlas Mountains.  相似文献   

20.
The crustal structure of the Dabie orogen was reconstructed by a combined study of U–Pb ages, Hf and O isotope compositions of zircons from granitic gneiss from North Dabie, the largest lithotectonic unit in the orogen. The results were deciphered from metamorphic history to protolith origin with respect to continental subduction and exhumation. Zircon U–Pb dating provides consistent ages of 751 ± 7 Ma for protolith crystallization, and two group ages of 213 ± 4 to 245 ± 17 Ma and 126 ± 4 to 131 ± 36 Ma for regional metamorphism. Majority of zircon Hf isotope analyses displays negative εHf(t) values of − 5.1 to − 2.9 with crust Hf model ages of 1.84 to 1.99 Ga, indicating protolith origin from reworking of middle Paleoproterozoic crust. The remaining analyses exhibit positive εHf(t) values of 5.3 to 14.5 with mantle Hf model ages of 0.74 to 1.11 Ga, suggesting prompt reworking of Late Mesoproterozoic to Early Neoproterozoic juvenile crust. Zircon O isotope analyses yield δ18O values of − 3.26 to 2.79‰, indicating differential involvement of meteoric water in protolith magma by remelting of hydrothermally altered low δ18O rocks. North Dabie shares the same age of Neoproterozoic low δ18O protolith with Central Dabie experiencing the Triassic UHP metamorphism, but it was significantly reworked at Early Cretaceous in association with contemporaneous magma emplacement. The Rodinia breakup at about 750 Ma would lead to not only the reworking of juvenile crust in an active rift zone for bimodal protolith of Central Dabie, but also reworking of ancient crust in an arc-continent collision zone for the North Dabie protolith. The spatial difference in the metamorphic age (Triassic vs. Cretaceous) between the northern and southern parts of North Dabie suggests intra-crustal detachment during the continental subduction. Furthermore, the Dabie orogen would have a three-layer structure prior to the Early Cretaceous magmatism: Central Dabie in the upper, North Dabie in the middle, and the source region of Cretaceous magmas in the lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号