首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
乌鲁木齐地区中小地震震源机制解及构造应力场   总被引:1,自引:0,他引:1  
主要对乌鲁木齐地区中小地震震源机制解及构造应力场进行分析。 结果表明, 乌鲁木齐地区中等地震震源断错性质主要以倾滑逆断层为主, 地震破裂面与其附近构造走向基本一致, 主压应力P轴方向为NE向或近NS向; 乌鲁木齐地区小地震的震源断错性质表现出一定的区域性, 破裂面以近EW向为主, 主压应力P轴方向近NS向, 兼有部分NE向或者NW向。 显示出小地震的发生既受局部地质构造的影响, 也受区域构造应力场的影响。  相似文献   

2.
北天山中东段中小地震震源机制解及应力场反演   总被引:3,自引:0,他引:3  
主要对北天山中东段中小地震震源机制解系统聚类和应力场反演。 结果表明, 研究区内中小地震震源断错性质主要以逆断层为主, 地震主破裂面基本沿NWW向或近EW向, 与该区域的NWW向构造带基本一致; 研究区内主压应力P轴近NS向, 倾角较小, 主张应力T轴倾角较大, 表明区域应力场主要受NS向水平挤压作用; 分区应力场反演结果显示, 研究区中、 西部最大主应力方向为近NS向, 与北天山西段构造应力场方向相一致。  相似文献   

3.
基于四川区域地震台网记录的波形资料,利用CAP波形反演方法,同时获取了2013年4月20日芦山M7.0级地震序列中88个M≥3.0级地震的震源机制解、震源矩心深度与矩震级,进而利用应变花(strain rosette)和面应变(areal strain)As值,分析了芦山地震序列震源机制和震源区构造运动与变形特征.获得的主要结果有:(1)芦山M7.0级主震破裂面参数为走向219°/倾角43°/滑动角101°,矩震级为MW6.55,震源矩心深度15 km.芦山地震余震区沿龙门山断裂带走向长约37 km、垂直断裂带走向宽约16 km.主震两侧余震呈不对称分布,主震南西侧余震区长约27 km、北东侧长约10 km.余震分布在7~22 km深度区间,优势分布深度为9~14 km,序列平均深度约13 km,多数余震分布在主震上部.粗略估计的芦山地震震源体体积为37 km×16 km×16 km.(2)面应变As值统计显示,芦山地震序列以逆冲型地震占绝对优势,所占比例超过93%.序列主要受倾向NW、倾角约45°的近NE-SW向逆冲断层控制;部分余震发生在与上述主发震断层近乎垂直的倾向SE的反冲断层上;龙门山断裂带前山断裂可能参与了部分余震活动.P轴近水平且优势方位单一,呈NW-SE向,与龙门山断裂带南段所处区域构造应力场方向一致,反映芦山地震震源区主要受区域构造应力场控制,芦山地震是近NE-SW向断层在近水平的NW-SE向主压应力挤压作用下发生逆冲运动的结果.序列中6次非逆冲型地震均发生在主震震中附近,且主震震中附近P轴仰角变化明显,表明主震对其震中附近局部区域存在明显的应力扰动.(3)序列整体及不同震级段的应变花均呈NW向挤压白瓣形态,显示芦山地震震源区深部构造呈逆冲运动、NW向纯挤压变形.各震级段的应变花方位与形状一致,具有震级自相似性特征,揭示震源区深部构造运动和变形模式与震级无关.(4)不同深度的应变花形态以NW-NWW向挤压白瓣为优势,显示震源区构造无论是总体还是分段均以NW-NWW向挤压变形为特征.但应变花方位与形状随深度仍具有较明显的变化,可能反映了震源区构造变形在深度方向上存在分段差异.(5)芦山地震震源体尺度较小,且主震未发生在龙门山断裂带南段主干断裂上,南段长期积累的应变能未能得到充分释放,南段仍存在发生强震的危险.  相似文献   

4.
搜集了盈江及其邻区5组地震序列震源机制解并反演得到该区域的构造应力场。研究结果显示:盈江地区整体主压应力以NNE向为主,主张应力以ESE向为主;但其局部应力场不完全一致,沿苏典断裂分布的主压应力轴走向随着断裂走向由北向南延伸角度逐渐向北偏移,而盈江地区的西南部,其主压应力走向更偏向于东,这可能与大盈江断裂的横向拉伸有关。此外,本研究通过应力场反演识别出了5组地震序列震源机制解的主发震断层节面的走向、倾角、滑动角及发震断层的摩擦系数,为今后该区域的地震研究及地壳动力学变迁提供了参考。  相似文献   

5.
四川盆地荣县—威远—资中地区属于历史弱震区,然而2019年相继发生多次破坏性地震事件.本文基于四川区域地震台网宽频带地震仪记录波形资料,利用CAP (Cut and Paste)波形反演方法,获得了2016年以来发生在荣县—威远—资中地区的26个MS≥3.0地震的震源机制解、震源矩心深度和矩震级,对该区域发震构造几何结构与变形特征及构造应力场特征进行了初步分析.主要获得如下认识:(1)26个MS≥3.0地震的震源矩心深度在1.5~5 km之间,平均深度3.4 km,表明事件发生在上地壳浅部沉积层内;震源深度分布揭示发震断层面倾向SE、缓倾角.(2)26个地震的震源机制全部为逆冲型,表明发震构造整体为逆断层性质.节面优势方位NNE-NE,结合走向与倾角统计结果,本文推测发震构造可能为威远背斜南翼一系列倾向SE、走向NNE-NE的缓倾角盲冲断层.(3)P、T、B轴优势方位单一,表明研究区域处于相对简单的构造应力环境.区域应力场反演获得的最大主压应力轴σ1方位NW-SE,近水平,与目前已知的该区域构造应力场水平主压应力方向一致,反映区内构造活动主要受区域构造应力场控制;其明显有别于四川盆地南缘2019年6月17日长宁MS6.0地震余震区NE-SW向的最大主压应力轴方位也揭示出四川盆地构造应力场具有明显的分区特征.(4)26个地震整体的应变花表现为NW-SE向挤压白瓣形态,表明区内发震构造整体呈NW-SE向纯挤压变形模式,明显有别于2019年长宁MS6.0地震序列NE-SW向挤压兼具小量NW-SE向拉张分量的构造变形模式,进一步表明四川盆地构造变形模式也具有明显的分区特征.  相似文献   

6.
云南地区中小地震震源机制及构造应力场研究   总被引:21,自引:6,他引:21       下载免费PDF全文
利用云南数字地震台网记录的区域波形资料, 通过波形反演确定了发生在云南地区的33次中小地震的震源机制. 结果表明,在川滇菱形块体内部及边界附近的地震以走滑为主,由震源机制得到的主压应力方向从北到南由北北西-南南东方向转向近南北向,张应力轴方向则主要表现为北东东-南西西或北东 南西向;在青藏高原东部地区,主压应力方向从青藏高原内部向外成放射状展布,张应力方向大多与该地区的弧形构造平行. 在28N附近地区,主压应力轴和张应力轴方向都存在较大的变化,其分界线似与龙门山断裂向西南方向的延长线相对应. 川滇菱形块体之外的地震的主压应力轴和张应力轴方向与块体内部的方向存在一定的差异. 通过与哈佛大学中强地震震源机制结果的对比发现,云南地区中小地震震源机制的反演结果与强震震源机制的结果有较好的一致性,表明中小地震的震源机制可用于该地区区域构造应力场的研究.   相似文献   

7.
北天山地区中强地震震源机制解分析   总被引:3,自引:1,他引:2  
利用北天山地区历史上24次中强地震震源机制解,进行系统聚类及应力场反演分析.结果表明,北天山地区中强地震震源断错性质主要以倾滑逆断层为主.多数地震的主破裂面为NW向.与其附近地震构造走向基本一致.主压应力P轴方位近NS向,倾角较小;主张应力T轴倾角较大,显示出区域应力场主要受近NS向水平挤压作用.最大主应力方向从东到西呈现出NNE-Ns-NW的渐变过程.  相似文献   

8.
以四川地区2008—2015年期间发生的ML4.0~6.0地震为例,利用四川区域台网宽频带波形资料,采用CAP(Cut and paste)方法计算其震源机制解和最佳震源深度,在此基础上分析地震震源机制解和震源深度空间分布特征。结果表明:(1)四川地区地震震源机制解类型存在显著空间分区特征。逆冲型地震集中分布在龙门山断裂带和川东盆地,揭示青藏高原的巴颜喀拉地块与华南地块的相互作用方式——强挤压。走滑型地震绝大多数分布在川西高原和攀西地区,这是由于印度板块向北东推挤和青藏高原物质向东扩张所导致的上地壳物质沿大型断层滑移。正断型地震主要分布在金沙江断裂带北段和汶川大震主震区,金沙江断裂带北段的拉张应力状态应是由青藏高原东部下地壳物质流动对上地壳物质有拖曳作用,与多力源组合共同作用决定的;而汶川主震区的正断型地震应是主震后震源区不同来源动力作用的复杂应力调整现象。其他类型地震都分布在龙门山断裂带,属于汶川或芦山地震的余震活动,其成因为大震后震源区不同来源应力作用使主应力方向倾斜偏离了水平面和垂直面而引起的应力变形。(2)震源机制解参数中的P、T、N轴反映了地震前后震源区应力状态的变化,是震源区构造应力的一种体现。四川地区构造地震的P、T轴方位空间展布存在地区差异:川西高原地区以约31°纬线为界,北部区域P轴方位呈NEE向,南部区域呈SEE向(平均约E19°S);龙门山断裂带南段P轴方位呈SEE向(平均约E25°S),中、北段P轴方向离散,无优势方位;攀西地区P轴方位呈SE向(平均约E51°S);T轴方位在川西高原呈近SN向拉张,在攀西地区又转为NE向,呈顺时针旋转趋势。(3)四川地区地震震源深度空间分布差异显著。从整体来看,四川地区地壳优势孕震层深度范围为5~15km,深度更深的地震分布在地壳厚度存在异常的大型断裂带(龙门山、小金河断裂带)或盆地至高原的过渡地带(乐山、犍为等地)。龙门山断裂带地震震源深度空间分布呈现出西南深、东北浅的特征,西南段地震震源最深达26km,中、北段地震震源最深达19km;且断裂带上走滑型地震相对于逆冲型和正断型地震存在震源深度偏浅的现象。川东盆地地震震源深度空间分布展显出西南深、东南浅的特征,盆地东南部地震震源深度分布范围为2~5km。揭示出四川地区地震震源是沿活动的脆性上地壳分布。  相似文献   

9.
基于1990年1月至2021年12月晋北地区中小地震的P波初动极性数据,采用综合震源机制解法反演晋北地区的综合断层面解。结果显示,震源机制解节面为EW和NE向,与晋北地区主要构造线一致;震源错动类型以正断型为主;主压应力方向为NE-NEE,仰角较大,主张应力方向为NW-SE,仰角近水平,与区域构造应力场方向吻合。综合断层面解中,P轴方位与区域优势方位一致时,晋北地区可能孕育中强地震的发生。  相似文献   

10.
利用西藏地震台网记录到的2017年11月18日西藏米林6.9级地震及其余震序列资料,研究此次地震的发震机制断层。双差定位结果显示,余震沿着主震的NW和SE方向往两侧扩展分布,震源深度主要集中在2~12 km,同时从短轴剖面上地震分布推断,此次米林地震的发震断层倾角约为45°。对ML3.5以上的余震采用CAP方法进行波形拟合震源机制反演,其结果显示,此次米林地震序列震源错动类型以逆冲和走滑为主,比较符合该区域的构造动力环境。应力场反演结果显示,米林地震序列主压应力轴(S1轴)方向为NNE-NS向,主张应力轴(S3轴)方向为SEE-SE向;反映的断层错动方式为逆冲兼走滑类型。地震余震序列展布以及震源机制分布显示断层走向和断层特性与帕隆—旁辛断裂的特征较为吻合,推测米林地震的发震断裂为帕隆—旁辛断裂。  相似文献   

11.
采用P波初动方法计算1999年以来营口—海城地区5次震群序列的中小地震震源机制解,并定义震源机制一致性参数θ为中小地震震源机制解3个正交的应力主轴与华北地区构造应力场3个应力主轴在三维空间的夹角之和。计算结果显示:营口—海城地区震群中较大地震发生前10天~2个月,θ都有一个持续低值的过程;1999年岫岩前震序列的θ变化幅度在20°~30°之间,且大部分小于65°。相比用震源机制P轴取向趋于一致来判定震源区应力状态,θ更有其优越性。  相似文献   

12.
论新疆活动构造特征与地震的关系(4)   总被引:3,自引:2,他引:1  
宋和平  柔洁 《内陆地震》2007,21(1):1-13
中国西部在印度洋板块和欧亚板块的作用下,地壳形变十分强烈。新疆地区地壳形变受力方向为近南北—北北东向,南部地区受印度洋板块作用,北部地区则主要是受西伯利亚块体的作用,整体运动速率由南向北逐渐减弱,GPS测量结果得到的区域应力场分布和地震震源机制解与区域构造的展布及其活动表现都相吻合。  相似文献   

13.
2008年四川汶川Mw7.9地震和1999年台湾集集Mw7.6地震均为挤压推覆构造环境下发生的板内逆断层型地震.通过对比分析2次地震前的CMT解、震源区附近的中小地震震源机制解及其反演的应力场可知,集集地震主震震源机制解与用台湾内陆中西部的CMT解反演得到的逆断层类型构造应力场吻合,而在主震前震源区附近中小地震震源机制...  相似文献   

14.
利用哥伦比亚大学 GCMT 目录给出的祁连山中东段地区中强地震震源机制资料,研究较大区域(34°-41°N,100°-106°E)的应力场;利用该地区布设的中法微震数字监测台网多年监测资料和甘肃数字监测台网资料,使用 P 波和 S 波初动及振幅比联合反演方法,反演中小地震震源机制解和发震应力场。结果表明,地区构造应力大致为北东40°-45°水平向压应力;景泰地区主压应力方向约北东45°,绝大多数地震为走滑型。天祝-古浪地区有相当部分的逆断层地震分布,主压应力方向约60°,P 轴仰角在10°左右优势分布,大致为水平应力场。这与大区域构造应力场和断层实际分布基本一致。  相似文献   

15.
自Global CMT和前人文献中搜索了1973~2015年间的34条中小地震震源机制解并进行分析,根据震级对每个地震震源机制解进行加权处理,采用网格搜索法反演了川滇菱形块体中部区域现今构造应力场。结果表明,川滇菱形块体中部区域整体以走滑断层类型为主,而西部呈现正断层类型;整个区域应力场受到近NW向挤压,NE向拉张,应力形因子为0.1。该区域应力场主张应力轴方向近水平,表明有横向的拉张作用。较低的应力形因子表明几乎处于NW-SE向和垂直向的双轴挤压及NE-SW向拉张的应力状态。这种应力状态来源于2种动力作用:(1)在青藏高原物质东流和华南块体阻挡作用下呈现NW-SE向挤压和NE-SW向拉张的走滑应力状态;(2)印度板块缅甸弧对该地区深部的NEE向低角度俯冲作用导致浅部地壳物质具有NEE-SWW向的拉张分量。这2种动力的共同作用导致该地区既出现走滑型地震,又出现正断型地震。  相似文献   

16.
田建慧  罗艳 《地震》2019,39(2):110-121
本文收集了1976—2018年发生在中国大陆及其周边地区(15°~55°N, 65°~125°E)的4303个地震震源机制解, 分析了该区震源机制解和P、 T轴空间分布特征, 并使用这些震源机制解, 反演得到了中国大陆及周边地区二维构造应力场分布。 应力场反演结果表明, 云南大部、 青藏高原大部以及华北华南大部以走滑型应力性质为主, 印度洋板块与欧亚板块的强烈碰撞控制着中国西部地区, 大量的逆断型地震集中分布在青藏高原周缘和西域活动地块的天山地区。 青藏高原内部也存在正断型地震, 且应力场方向在26°N发生了很大的变化。 位于青藏高原东构造线以南的滇缅活动块体, 最大主压应力σ1方向在大致100°E发生突变, 由以西的NNE方向偏转到NNW方向。 中国东部的东北块体到华北块体再到华南块体, 最大主压应力方向有一个从NE向逐渐转变成EW向再变化到NW向的旋转趋势。 应力场总体结果表明, 中国东部应力场主要受到太平洋板块和菲律宾板块对欧亚大陆俯冲的作用, 中国西部主要受印度板块向北碰撞欧亚大陆的影响, 块体内部相互作用、 块体与断裂带相互作用也对应力场变化产生影响。  相似文献   

17.
攀西地区地震分布和构造应力场特征   总被引:7,自引:1,他引:7  
本文利用近十几年攀西地区的地震空间分布和对其中79个中小地震机制解的结果,着重讨论本地区构造活动和应力场分布的区域性特征。文中阐明该区中部及西南端分别受华南地台北西向应力场和印度板块北东向侧压的影响,而该区的南北两端则受康滇菱块局部应力场的干扰。  相似文献   

18.
李君  王勤彩  郑国栋  刘庚  周辉  周聪 《地震学报》2019,41(2):207-218
利用双差定位方法对2018年松原MS5.7地震序列中ML≥1.0地震重新定位,之后使用CAP方法求解松原MS5.7地震序列中强地震的震源机制解,再借助MSATSI软件包反演得到松原地区的区域应力场。综合分析以上研究结果得到如下结论:① 松原MS5.7地震序列发生在NW走向的第二松花江断裂与NE走向的扶余—肇东断裂交会处,将地震精定位结果沿两条断层走向作剖面分析,NW向剖面主轴长度约为5 km,震中分布均匀,NE向剖面主轴长度亦约为5 km,震中呈倾向NE的高倾角分布;② 该序列中的4次ML≥3.7地震的震源机制解具有良好的一致性:节面Ⅰ走向为NE向,节面Ⅱ走向为NW向,均为高倾角走滑断层。中强地震的震源机制节面解与第二松花江断裂性质基本一致,由此推断第二松花江断裂是本次松原地震的发震断层;③ 松原地区的主压应力方位角为N86°E,倾角为7°,主张应力方位角为N24°E,倾角为71°。松原地区的区域应力场既受到大尺度的板块构造运动的控制,又受到区域构造运动的影响。在太平洋板块对北东亚板块向西俯冲作用下,东北地区产生了近EW向的主压应力,受周边地质构造控制,松辽盆地内NE向断裂与NW向断裂交会处易发生走滑型地震,2018年松原MS5.7地震正是在这种构造作用控制下发生的中强地震。   相似文献   

19.
LI Jin  GAO Yuan  ZHANG Bo  WANG Liang  GAO Rong 《地震地质》2016,38(4):1058-1069
An ML4.7 earthquake occurred on February 2,2012 in Liaoning Gaizhou (40.56°N,122.36°E),since then,small earthquakes are frequent in this area,and until now the seismic activity does not stop,several earthquakes with magnitude larger than 4.0 have occurred.As of October 30,2014,1223 earthquakes have happened in the Gaizhou area,including 934 earthquakes with the magnitude ML1.0~1.9,247 with the magnitude ML2.0~2.9 and 45 with the magnitude ML3.0~3.9.Meanwhile,earthquakes are continuously active in Haicheng area where the MS7.3 earthquake happened in 1975,and there are over 1100 earthquakes (ML ≥ 1.0) having occurred since the Gaizhou earthquake swarm activity.Because the polarization direction of the fast shear wave is very sensitive to the variation of the principal stress environment,the shear wave splitting parameter can reflect the regional stress state and the local structural features,especially effective for the analysis of small-scale stress environment characteristics.So based on the seismic activities of the two earthquake clusters,this study analyzes the characteristics of shear-wave splitting in Gaizhou-Haicheng area.Preliminary results show that predominant polarization direction of fast shear-waves in the old earthquake region of Haicheng is stable,consistent with the direction of regional stress field.Due to presence of active fault below the Gaixian station (GAX),the predominant polarization direction of fast shear-waves is more complicated.There are two predominant polarizations,consistent respectively with Jinzhou Fault strike which is below the station and the maximum principal stress direction in this area.In addition,Gaizhou earthquake swarm activity increased after December 22,2013,and after the time node,the predominant polarization direction of fast shear-waves in Gaixian station is SEE,which is close to the predominant polarization direction of fast shear-waves in Yingkou station,at the same time consistent with the maximum principal stress direction of this region.Thus it can be inferred,the enhanced activity of Gaizhou earthquake swarm since December 22,2014 may be related to local enhancement of regional stress.In addition,the average time-delays of slow waves in station YKO and GAX show that there are no obvious changes before and after the time point of December 22,2013,which is different greatly with the previous related researches on the variation of slow wave time-delays,and there is no possibility that the Gaizhou earthquake swarm evolved into foreshock sequences from current preliminary results.We should do more work to study the details of the time delay variation of shear wave splitting parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号