首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The data obtained on the sodic part of the SiO2-Al2O3-Na2O-K2O system with F at 800°C and 1 kbar provide the basis for constructing a phase diagram showing the region of an aluminosilicate melt. In this system, oxide and fluoride phases are identified that control the stability field of the melt and the solubility of F. Liquid immiscibility was detected in aluminous nepheline-and quartz-normative Li-bearing compositions (the latter compositions are characterized by a wider immiscibility field). Solubility of F was determined in an aluminosilicate melt saturated with respect to F, i.e., coexisting with phases rich in this element. The F concentrations in the glasses range from 2 to 20 wt %. The quartz-normative glasses are poorer in F (no more than 5 wt % F) than the nepheline-normative glasses (which contain mostly 5–10 wt % F). The maximum F concentrations (> 10 wt %) in the phase diagram lie on both sides of the albite composition point in the region of ultragpaitic nepheline-normative melts and in the region of normal syenite melts. Changes in the phase relations when Na is substituted for K were determined in the quartz-normative silicate melt.  相似文献   

2.
Phase relations in the system Pb-Sn-Fe-Sb-S were investigated through the diagrams of projecting plane 8x(PbS-SnS-SnS2)from the vertrex point Fe0.96Sb2.04S4.12by vacuum silica tube technique.Experimental results have shown that franckeite has a wide solid solution with substitution of Pb^2 by Sn^2 ,In franckeite s.s.the content of Sn^2 varies from 0 to 4.8 atoms (total metal atoms are 11 atoms per formula) at 500℃ and 0-4.0 atoms at 400℃,respectively,Meanwhile,the content of Sn^4 ranges from 1.3to 2.0 atoms at 500℃ and 1.5-2.1 atoms at 400℃ in franckeite s.s.These results are consistent well with analytic data on natural franckeite.The cylindrite solid solutiopn has a relatively small range with Sn^2 -1.8atoms and Sm^4 =3.2-4.2 atoms per formula at 500℃ and ,Sn^2 =0.5-1.7 atoms and Sm^4 =3.3-4.2 atoms at 400℃ which are comparable with natural cylindrite.The phases coexisting in equilibrium with franckeite s.s. are galena,boulangerite,robinsonite.teallite,SnS,cylindrite.s.s.and synthetic phase Ⅲ ss or I ss.The cylindrite s.s.coexists with SnS2 and the above mentioned phases,but not with galena.teallite and SnS,and probably not with boulangerite in this projecting plane.  相似文献   

3.
The join tremolite (Tr)-pargasite (Pa) has been studied in the temperature range 750 °–1,150 ° C under a water vapor pressure of 1 and 5 kbar. There is a continuous solid solution series between the compositions Tr85Pa15 and TroPa100 at 850 ° C and 5 kbar. Tremolite and pargasite are separated by a solvus at 1 kbar and the field of tremolitic amphibole +pargasitic amphibole+vapor is present in the region between Tr90Pa10 and Tr10Pa90 at 800 ° C. The phase assemblages at 850 ° C and 1 kbar change as follows with increasing pargasite component; clinopyroxene +orthopyroxene+quartz+vapor, tremolitic amphibole+vapor, tremolitic amphibole+clinopyroxene +forsterite+plagioclase+vapor, tremolitic amphibole+pargasitic amphibole+vapor, and pargasitic amphibole+vapor. The petrological significance of amphibole pairs in metamorphic rocks is discussed on the basis of the experimental results.  相似文献   

4.
Chemical data on eight ferromagnesian silicates from a syenitic and two tonalitic charnockites from the type area near Madras show remarkably regular cation fractionation patterns. The distribution coefficients for magnesium-iron point to equilibration under granulite facies metamorphism. Orthopyroxene-garnet-biotite subsystem has been found to be of a near invariant nature, while the compositions of orthopyroxene and biotite in the nongarnetiferous tonalite are different. Analysis of phase equilibrium by Thompson type AFM projection strongly indicates that pressure, temperature and the chemical potential of water were constant for assemblages separated by large distances.  相似文献   

5.
Many features of the magma-hydrothermal interface are directly observable in, near seafloor hydrothermal systems at mid-ocean ridges. A striking aspect observed at that interface is the spontaneous redox reaction that occurs during rapid crystallization of basaltic magma, which results in generation of highly reducing hydrothermal fluids. A consequence of the reaction is that the ferric/ferrous ratio observed in the resulting crystalline basalt is much higher than it was in the basaltic magma, the redox state of the magma inferred from the ferric/ferrous ratio in the crystalline rock is considerably higher than it was in the magma [Earth Planet. Sci. Lett. 79 (1986) 397]. Magnetite-ulvöspinel is the only ferric iron-containing phase observed in the crystalline portion of the basalt. This suggests that the driving force for that reaction is related to the stability of magnetite relative to the FeO component in the basaltic liquid (or glass), resulting in the oxidation of ferrous iron by H2O dissolved in the melt, yielding magnetite, releasing H2 from the system. This is an auto-oxidation reaction in which all reactants are present internally in the basalt magma prior to crystallization. H2O is the limiting reagent for magnetite formation in the case of MORB magma. If a similar auto-oxidation occurs in the more silicic magmas commonly associated with terrestrial hydrothermal ore deposits, it would have important consequences for the interpretation of the redox condition existing at terrestrial magma-hydrothermal interfaces. Glassy I-type dacites extruded on the seafloor in the Manus Basin have ferric/ferrous ratios that are significantly lower than in I-type plutons, terrestrial volcanics. The ferric/ferrous ratios in the Manus Basin dacites yield oxygen fugacities from about one to more than two log units below that of nickel–nickel oxide. Oxidation of ferrous iron in these silicic magmas is predicted to generate an amount of H2 that is proportional to the amount of ferrous iron present, rather than the amount of H2O (as in the case of MORB) due to the high ratio of H2O to ferrous iron in silicic magmas. These relatively reduced dacitic magmas would yield significant quantities of H2 on crystallization, which would make hydrothermal fluids at the interface strongly reducing, thus affect the speciation in fluids at the magma-hydrothermal interface.  相似文献   

6.
7.
Crystal-melt relations at a water vapour pressure of 1 kilobar have been determined for planes at 3, 5, 7.5, and 10 weight per cent anorthite in the system NaAlSi3O8KAlSi3O8-CaAl2Si2O8-SiO2. The ratio of the silicate components in the liquids which are in univariant equilibrium with plagioclase, alkali feldspar, quartz and gas are Ab31Or28Q38An3 (weight per cent) at 730°±5–10° C, Ab21Or34Q40An5 at 745°±5–10° C and Ab10Or39 Q43.5An7.5 at 780°±10° C. The univariant curve on which the above compositions lieoriginates on the H2O-saturated Or-An-Q plane at a composition containing less than 10 weight per cent An and terminates within 1.5 weight per cent An of the H2O-saturated Or-Ab-Q plane. Experimental data for the synthetic system have been used to illustrate a discussion on the partial melting of metasediments and the possible significance of such a process with respect to the genesis of granitic rocks. Data taken from the literature (Winkler and v. Platen, 1960, 1961a) have been used to illustrate that the normative salic composition of a sediment has a strong influence on the composition of any melt which form when such a rock is subjected to high temperatures and pressures.  相似文献   

8.
Phase relations and mineral assemblages in the Ag-Bi-Pb-S system   总被引:1,自引:0,他引:1  
Phase relations within the Ag-Bi-S, Bi-Pb-S, and Ag-Pb-S systems have been determined in evacuated silica tube experiments. Integration of experimental data from these systems has permitted examination and extrapolation of phase relations within the Ag-Bi-Pb-S quaternary system. — In the Ag-Bi-S system liquid immiscibility fields exist in the metal-rich portion above 597±3°C and in the sulfur-rich portion above 563±3°C. Ternary phases present correspond to matildite (AgBiS2) and pavonite (AgBi3S5). Throughout the temperature range 802±2°C to 343±2°C the assemblage argentite (Ag2S) + bismuth-rich liquid is stable; below 343°C this assemblage is replaced by the assemblage silver + matildite. — Five ternary phases are stable on the PbS-Bi2S3 join above 400°C — phase II (18 mol-% Bi2S3), phase III (27 mol-% Bi2S3), cosalite (33.3 mol-% Bi2S3), phase IV (51 mol-% Bi2S3), and phase V (65 mol-% Bi2S3). Phase IV corresponds to the mineral galenobismutite and is stable below 750±3°C. Phases II, III, and V do not occur as minerals, but typical lamellar and myrmekitic textures commonly observed among the Pb-Bi sulfosalts and galena evidence their previous existence in ores. Phase II and III are stable from 829±6°C and 816±6°C, respectively, to below 200°C; Phase V, stable only between 730±5°C and 680±5°C in the pure Bi-Pb-S system is stabilized to 625±5°C by the presence of 2% Ag2S. Experiments conducted with natural cosalites suggest that this phase is stable only below 425±25°C in the presence of vapor. — In the Ag-Pb-S system the silver-galena assemblage is stable below 784±2°C, whereas the argentite + galena mineral pair is stable below 605±5°C. — Solid solution between matildite and galena is complete above 215±15°C; below this temperature characteristic Widmanstätten structure-like textures are formed through exsolution. Schematic phase relations within the quaternary system are presented at 1050°C, at 400°C, and at low temperature.
Zusammenfassung Die Phasenbeziehungen in den Systemen Ag-Bi-S, Bi-Pb-S und Ag-Pb-S wurden durch Versuche in evakuierten Quarzglasröhrchen bestimmt. Die Auswertung aller experimentellen Daten gestattete eine Extrapolation der Phasenbeziehungen im quaternären System Ag-Bi-Pb-S. — Im System Ag-Bi-S besteht ein Zwei-Schemlzenfeld im metallreichen Teil über 597±3°C und im schwefelreichen Teil über 563±3°C. Die ternären Phasen entsprechen den Mineralien Schapbachit (AgBiS2) und Pavonit (AgBi3S5). Zwischen 802±2°C und 343±2°C ist die Paragenese Silberglanz (Ag2S) + Bi-reiche Schmelze stabil; unterhalb 343°C wird sie jedoch ersetzt durch die Paragenese Silber + Schapbachit. — Fünf ternäre Phasen sind stabil im Schnitt PbS-Bi2S3 oberhalb von 400°C: Phase II (18 Mol-% Bi2S3), Phase III (27 Mol-% Bi2S3), Cosalite (33.3 Mol-% Bi2S3), Phase IV (51 Mol-% Bi2S3) und Phase V (65 Mol-% Bi2S3). Phase IV entspricht dem Mineral Galenobismutit und ist stabil unterhalb 750±3°C. Die Phasen II, III und V kommen zwar nicht in der Natur vor, jedoch weisen typische myrmekitische und lamellare Gefüge, die man häufig in Pb-Bi-Sulfosalzen und deren Verwachsungen mit Bleiglanz beobachtet, auf die ehemalige Existenz solcher Phasen in diesen Erzen hin. Die Phasen II und III sind stabil von 829±6°C bzw. 816±6°C bis unter 200°C. Die Phase V, die im reinen System Bi-Pb-S zwischen 730±5°C und 680±5°C auftritt, wird in Gegenwart von 2% Ag2S stabilisiert bis herab zu 625±5°C. Versuche mit natürlichen Cosaliten lassen darauf schließen, daß diese Phase nur unterhalb 425±25°C in Gegenwart einer Gasphase stabil ist. — Im System Ag-Pb-S ist die Paragenese Silber-Bleiglanz unterhalb von 784±2°C stabil, die Paragenese Silberglanz-Bleiglanz dagegen unterhalb 605±5°C. — Die Mischkristallreihe von Schapbachit und Bleiglanz ist vollständig oberhalb 215±15°C; unterhalb dieser Temperatur entstehen charakteristische Entmischungsgefüge ähnlich den Widmannstättenschen Figuren. Für das quaternäre System werden schematische Phasenbeziehungen für 1050°C, 400°C und eine noch tiefere Temperatur gegeben.
  相似文献   

9.
Phase relations in the system NaAlSiO4-NaGaSiO4 to 945° C at 1 kbar P(H2O) are dominated by stability of Na(Al,Ga)SiO4 with the beryllonite-type structure. The nepheline structure is restricted to NaAlSiO4-rich compositions at moderate and high temperature. Structure-composition relationships are controlled by space-fitting requirements of both framework and cavity cations, as in related systems. The two-phase (nepheline-type+beryllonite-type) field has been delineated from the end-member NaAlSiO4 composition up to the peritectic point at about 945° C (and 60 mol% NaGaSiO4), using a volume-composition relationship for the beryllonite-type phase, phase appearance, and electron microprobe analysis. At end-member NaGaSiO4 composition, the beryllonite-type phase is stable to the melting point (902±5° C). At end-member NaAlSiO4 composition, the beryllonite-type?nepheline-type transformation occurs at 348±2° C, and is associated with an increase in molar volume of 2.4% and enthalpy of 5170±40J·mol?1. Thus, end-member NaAlSiO4 nepheline, and probably all sub-potassic nephelines as well, are metastable at very-low geological temperatures.  相似文献   

10.
A comparison between the variation trend of alkaline basaltic magmas within the CaO-MgO-Al2O3-SiO2 system and experimentally estimated phase relations for this system at high pressures, suggests an olivine reaction relationship, which may explain the transition from primary magmas in equilibrium with olivine to alkaline basaltic magmas in which olivine does not form at high pressures. This reaction relationship is considered to be due to a transition from positive to negative crystallization with respect to olivine along the four phase curve where olivine, diopside, pyrope garnet and liquid are initially in equilibrium. The bimineralic, eclogitic character of alkaline basaltic compositions at high pressures is interpreted as being due to the presence of a thermal minimum on the three phase surface, where dioside and pyrope garnet are in equilibrium with liquid.  相似文献   

11.
Basaltic glasses from the three alkalic areas of Iceland (Snaefellsnes Volcanic Zone, Sudurland Volcanic Zone and Vestmannaeyjar Volcanic Area) contain plagioclase, olivine, clinopyroxene, chromian spinel and titanomagnetite as phenocryst phases. The glasses are hypersthene to nepheline normative alkali basaltic with FeO/ MgO ratios between 1.4–4.7. Olivine ranges in composition from Fo90 to Fo55, plagioclase from An90 to An50 and clinopyroxene from En45Fs10Wo45 to En40Fs17Wo43. Clinopyroxene reveals systematic Ti:Al metastable crystallization trends related to the composition of the enclosing glass. Two types of phenocryst are present in most glasses and show a bimodality in size and composition. Microphenocryst phases are those most likely to have crystallized from the enclosing glass, while macrophenocrysts may have crystallized from a liquid of slightly less evolved composition. The glasses show complex phenocryst-glass relations which can be related to a polybaric effect. The normative glass compositions are related to 2-phase cotectic surfaces in the basalt tetrahedron and define the position of the 3-phase cotectic line. In general with increasing FeO/MgO in the glass the phenocryst assemblages vary from clinopyroxene, olivine and plagioclase along a clinopyroxene-olivine surface to olivine and plagioclase along an olivine-plagioclase surface. The normative glass compositions show a deflection from clinopyroxene-bearing to clinopyroxene-free glasses. The appearance of plagioclase together with clinopyroxene and olivine can be explained in the light of experimental investigations of the effect of pressure on phase relations. The major element variation of the glasses is interpreted as representing mantle derived magma batches of primary liquids, modified to some degree by high (6 kbar) and intermediate to low pressure (below 3 kbar) crystal fractionation towards equilibrium phase relations during ascent and residence in crustal magma chambers. The observed deflection in normative compositions of the glasses marks the position of the high pressure 3-phase cotectic line. The bimodality in size and composition of plagioclase and olivine phenocrysts can be related to high pressure crystal fractionation in the melt. The Fe-Ti basalt glasses from Sudurland are believed to be quenched high pressure compositions.  相似文献   

12.
Phase relations of biotite and stilpnomelane in the greenschist facies   总被引:1,自引:0,他引:1  
Phase relations of biotite and stilpnomelane and associated silicate minerals have been studied in rocks of the greenschist facies, chiefly from Otago, New Zealand and western Vermont, but also from Scotland, Minnesota-Michigan iron range, and northwest Washington. That stilpnomelane in the greenschicht facies crystallizes initially with nearly all iron in the ferrous state is indicated by chemical analyses, high p-T experiments, and phase relationships. Alteration of stilpnomelane after metamorphism not only oxidizes iron but leaches potassium; corrections for both effects must be made in using analyses of brown stilpnomelane in studies of phase relations. Two discontinuous reactions which produce biotite at the biotite isograd have been identified:
  1. muscovite+stilpnomelane+actinolite→ biotite+chlorite+epidote
  2. chlorite+microcline→ biotite+muscovite. Biotite produced by the first of these reactions has a limited range of variation in Fe/Mg. As grade advances within the biotite zone more magnesian and ferruginous biotites become stable in consequence of the two continuous reactions:
  3. muscovite+actinolite+chlorite→ biotite (Mg-rich)+epidote
  4. muscovite+stilpnomelane→ biotite (Fe-rich)+chlorite.
Stilpnomelane is stable in muscovite-free rocks throughout the biotite zone, and even up to the grade at which hornblende becomes stable. Phengitic muscovite is stable throughout the biotite zone in New Zealand and thus apparently does not contribute to the formation of biotite until a higher grade is reached.  相似文献   

13.
Phase relations have been determined at 20 kb in the simple, Fe-, Ti-free systems hydroxyphlogopite-hydroxyapatite and hydroxyfluorphlogopite-hydroxyfluorapatite in order to determine distribution of fluorine between phlogopite, apatite and melt under mantle conditions. No excess H2O was present in the hydroxyphlogopite-hydroxyapatite system and the F/(OH) ratio was unity in the F-bearing system. Both systems are pseudobinary and contain forsterite at phlogopite-rich compositions. In the F-absent system, the minimum melting occurs at 1225°C and Phl85Ap15, whereas in the F-bearing system this temperature is 1260°C and Phl66Ap34. Phlogopite in the F-absent system has lower Al than in the F-bearing system with both showing Si+Mg=[IV]Al+[VI]Al as the principal substitution. Increase in CaO in forsterite increases with increasing apatite in the bulk composition and is more pronounced in the F-absent system. Distribution of fluorine between phlogopite and liquid and apatite and liquid shows that D F (Phl/glass) ranges from 2–1.25 depending on temperature and bulk composition, whereas the D F (Apat/glass) is about unity. These results suggest that fluorine will tend to remain in the solid phases rather than the melt during partial melting in the mantle. Hence the enrichment of fluorine in ultrapotassic magmas and its role in their evolution are constrained.  相似文献   

14.
Fluorite stability in silicic magmas   总被引:5,自引:1,他引:5  
Recent experimental evidence is used to assess the conditions under which fluorite forms an early crystallising phase in silicic magmas. Fluorite solubility primarily depends on the (Na + K)/Al balance in the coexisting silicic melt, reaching a minimum in metaluminous melts. It can display reaction relationships with topaz and titanite, depending on changes in melt composition during crystallisation. An empirical model of fluorite stability in Ca-poor peralkaline rhyolite melts is derived and applied to selected rocks:
At the F contents preserved in most silicic rocks, fluorite should normally appear late in the crystallisation sequence, in agreement with petrographic observations. During fluid-absent crustal anatexis, fluorite should melt at a relatively early stage and restitic fluorite is unlikely to persist during prolonged melting. Fluorite may, however, exert a decisive control on the alkali/alumina balance of sub-aluminous anatectic melts and it can affect the liquid line of descent of silicic magmas once extracted from source.Editorial responsibility: J. Hoefs  相似文献   

15.
The phase diagrams of the systems Cu2S-PbS-Bi2S3 and Ag2S-PbS-Bi2S3 have been investigated in the present study. The paper is concerned with the complete solid solution between bismuthtite and aikinite above 300°C in the system Cu2S-PbS-Bi2S3. The synthetic phases CuBi3S5 and Cu3Bi5S9 have their solid solution ranges in the ternary system with 9 and 26 mole% PbS at maximum, respectively. A complete solid solution between PbS and AgBiS2 divides the phase diagram of the system Ag2S-PbS-Bi2S3 into two parts: Bi-rich and Ag-rich. All sulfosalt minerals and solid solutions, including pavonite ss, lillianite ss, heyovskyite and benjaminite are on the Bi-rich side. And divarant relations were found between pavonite ss -lillianite ss, benjaminite and bismuthtite as well as between lillianite ss -bismuthtite and galenobismutite. Synthetic experiments using LiCl-KCl flux technique show that when a minor amount of copper (less lwt.%) is added in, many of Ag-and Pb-bismuth sulfosalt minerals, for example, vikingite (Ag5Pb8Bi13S30), are synthesized successively, particularly at 400°C. So is heyrovskyite, which has a solid solution range with 3.7 mole% Cu2S at maximum in the system Cu2S-PbS-Bi2S3.  相似文献   

16.
《Lithos》1986,19(2):153-163
Amphiboles approached edenite (NaCa2Mg5Si7AlO22(OH)2), richterite (Na2CaMg5Si8O22(OH)2), tremolite (□Ca2Mg5Si8O22(OH)2) solid solutions were studied by conventional hydrothermal techniques employing the bulk compositions edenite, and edenite + additional quartz, all with excess H2O. For the stoichiometric edenite bulk composition + excess H2O, the equilibrium phase assemblage is diopside + Na-phlogopite + forsterite + fluid at, and just above the amphibole high-temperature limit at 850 ± 5°C, 500 bar, and 880 ± 5°C, 1000 bar. The breakdown temperature of sodic phlogopite is 855 ± 3°C at 500 bar, and 890 ± 5°C at 700 bar, producing nepheline + plagioclase (or melt), additional forsterite and fluid. Diopside and Na-phlogopite solid solution coexist over a broad Pfluid-T region, even within the amphibole field, where they are associated with an edenite-richterite (-tremolite) solid solution of approximate composition Ed35Rc50Tr15.In the system edenite + 4 quartz + excess H2O, nearly pure tremolite and albite coexist stably between 670° and 830°C at 1000 bar and give way to the possibly metastable assemblage diopside + talc + albite below 670°C. In the presence of albite, tremolite reacts to produce diopside + quartz + enstatite + fluid above 830°C at 1000 bar. For the investigated silica-rich bulk composition, amphibole Pfluid-T stability is divided by the albite melting curve into a tremolite + albite field, and a tremolite + aqueous melt field. Substantial equilibrium solid solution of tremolite towards edenite or richterite was not observed for silica-excess bulk compositions. Metastable edenite-rich amphiboles initially synthesized change to tremolite with increasing run length in the presence of free SiO2.Edenitic amphibole is stable only over a very limited temperature range in silica-undersaturated environments, thus accounting for its rarity in nature. Na-phlogopite solid solutions are also disfavored by high aSiO2; even for nepheline-normative lithologies, a hypothesized rapid low-temperature conversion to vermiculite or smectite could partly explain the scarcity of sodic phlogopite in rocks.  相似文献   

17.
The model for the thermodynamic properties of multicomponent pyroxenes (Part I) is calibrated for ortho- and clinopyroxenes in the quadrilateral subsystem defined by the end-member components Mg2Si2O6, CaMgSi2O6, CaFeSi2O6, and Fe2Si2O6. This calibration accounts for: (1) Fe-Mg partitioning relations between orthopyroxenes and augites, and between pigeonites and augites, (2) miscibility gap features along the constituent binary joins CaMgSi2O6-Mg2Si2O6 and CaFeSi2O6-Fe2Si2O6, (3) calorimetric data for CaMgSi2O6-Mg2Si2O6 pyroxenes, and (4) the P-T-X systematics of both the reaction pigeonite=orthopyroxene+augite, and miscibility gap featurs, over the temperature and pressure ranges 800–1500°C and 0–30 kbar. The calibration is achieved with the simplifying assumption that all regular-solution-type parameters are constants independent of temperature. It is predicated on the assumptions that: (1) the Ca-Mg substitution is more nonideal in Pbca pyroxenes than in C2/c pyroxenes, and (2) entropies of about 3 and 6.5 J/K-mol are associated with the change of Ca from 6- to 8-fold coordination in the M2 site in magnesian and iron C2/c pyroxenes, respectively. The model predicts that Fe2+-Mg2+ M1-M2 site preferences in C2/c pyroxenes are highly dependent on Ca and Mg contents, with Fe2+ more strongly preferring M2 sites both in Ca-rich C2/c pyroxenes with a given Fe/(Fe+Mg) ratio, and in magnesian C2/c pyroxenes with intermediate Ca/(Ca+Fe+Mg) ratios.The proposed model is internally consistent with our previous analyses of the solution properties of spinels, rhombohedral oxides, and Fe-Mg olivines and orthpyroxenes. Results of our calibration extend an existing database to include estimates for the thermodynamic properties of the C2/c and Pbca pyroxene end-members clinoenstatite, clinoferrosilite, hedenbergite, orthodiopside, and orthohedenbergite. Phase relations within the quadrilateral and its constitutent subsystems are calculated for temperatures and pressures over the range 800–1700°C and 0–50 kbar and compare favorably with experimental constraints.  相似文献   

18.
Phase relations in the ternary systems Ag2S-Cu2S-PbS and Ag2S-Cu2S-Bi2S3 were studied using the silica vacuum technique. In the system Ag2S-Cu2S-Bi2S3 the phase relations are dominated by join-lines from galena to f.c.c. (Agx Cu2−xS) and b.c.c. (Cux Ag2−xS) at 500°C. With decreasing temperature, galena can coexist with all the phases on the Ag2S-Cu2S join. There are six solid solutions, and one new phase, i.e., “C” whose composition is Ag1.1 Cu4.8Bi5.8S12 in the system Ag2S-Cu2S-Bi2S3 at 500°C. The pavonite (AgBi3S5) contains 14 mole% Cu2S in solid solution, but only 3.0 mole% Ag2S in CuBi3S5 solid solution. The Cu3Bi5S9 ss and wittichenite (Cu3BiS3) ss can form join-lines with pavonite as and have the maximum contents of 9.0 and 18 mole% Ag2S. The most striking feature is the presence of bejaminite as a stable phase with a chemical formula of Ag2Bi4S7 on the Ag2S-Bi2S3 join. AgBiS2 of the PbS type occupies a fairly large field with a maximum of 23 mole% Cu2S.  相似文献   

19.
An extremely differentiated suite of unaltered volcanic rocks dredged from the Galapagos Spreading Center ranges in 18O from 5.7 to 7.1 At 95°W, low K-tholeiites, FeTi-basalts, andesites and rhyodacites were recovered. Their lithologic and major element geochemical variation can be accounted for by crystal fractionation of plagioclase, pyroxenes, olivine and titanomagnetite in the same proportions and amounts needed to model the 18O variation by simple Rayleigh fractionation. More complicated behaviour was observed in a FeTi-basalt suite from 85°W. This study shows that 90% fractionation only enriches the residual melt by about 1.2 in 18O. It also implies that the magma chambers along parts of the Galapagos Spreading Center were static and isolated such that extreme differentiation could occur.  相似文献   

20.
An outline of recent developments in Raman spectroscopy at high pressure, high temperature and combined high pressure and high temperature is presented. The instrumental and technical aspects of Raman spectroscopy, and coupling of diamond anvil cells and miniature furnaces to Raman microspectrometers are discussed. Some potential pitfalls, such as the thermal pressure in laser heated diamond anvil cells or the thermal radiation during high-temperature measurements, are presented. Special emphasis is given on processing of high-temperature Raman data. New recently discovered phase transformations in the SiO2 system (quartz→ quartz II, pressure-induced amorphization of quartz) and structural changes in SiO2 glass and melt are used to infer the capability of in-situ Raman spectroscopy for determining the microscopic behaviour of minerals, melts and glasses under extreme pressure and temperature conditions. Finally, it is shown how vibrational mode anharmonicity can be obtained from the pressure- and temperature-induced shifts of Raman modes. This anharmonicity can be introduced into the vibrational modeling of the thermodynamic properties (entropy and equation of state) of minerals. The example of calcite is briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号